You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Metal Halide Perovskites for Generation, Manipulation and Detection of Light covers the current state and future prospects of lead halide perovskite photonics and photon sources, both from an academic and industrial point-of-view. Advances in metal halide perovskite photon sources (lasers) based on thin films, microcrystals and nanocrystals are comprehensively reviewed, with leading experts contributing current advances in theory, fundamental concepts, fabrication techniques, experiments and other important research innovations. This book is suitable for graduate students, researchers, scientists and engineers in academia and R&D in industry working in the disciplines of materials science and engineering. - Includes comprehensive reviews from academic and industrial perspectives of current trends in the field of metal halide perovskite for photonics - Provides an up-to-date look at the most recent and upcoming applications in metal halide perovskite photonics, such as; photodetectors, lighting, lasing, nonlinear photonics and quantum technologies - Discusses future prospective trends and envisioned applications of metal halide perovskites, from near-UV to near-IR photonics
Biological and chemical warfare agents, including viruses, bacteria, and explosive and radioactive compounds, can induce illness or death in humans, animals, and plants. Plasmonic nanosensors as detection tools of these agents offer significant advantages, including rapid detection, sensitivity, selectivity, and portability. This book explores novel and updated research on different types of plasmonic nanosensors for analysis of biological and chemical threat agents. It covers a brief theory of plasmonic nanosensors, summarizes the state-of-art in the molecular recognition of biological and chemical threat agents, and describes the application of various types of nanosensors in the detection...
Quantum Photonics aims to serve as a comprehensive and systematic reference source for entrants to the field of quantum photonics, including updated topics on quantum photonics for researchers working in this field. The book reviews the fundamental knowledge of modern photonics related quantum technologies, key concepts of quantum photonic devices, and quantum photonics applications. The book is suitable for graduate students, researchers, and engineers who want to learn quantum photonics fundamentals. The editors, who are leaders in this field, have formulated this book as an introduction to the cutting-edge research in quantum photonics. Researchers and students involved in the development...
Metamaterials-by-Design: Theory, Technologies, and Vision is devoted to a comprehensive review of the latest advancements and current trends in the field of system-level-oriented metamaterial design methods, technologies, and future perspectives. Starting from the theoretical and methodological motivations of this research to macro-scale performance-driven design of volumetric and planar metamaterials, the book introduces advanced task-oriented modeling approaches, including specific reference to their multi-scale/ multi-physics customization in recent metamaterial science and engineering. In the introduction of these concepts, particular attention is paid to the illustration of the physical...
Biophotonics and Biosensing: From Fundamental Research to Clinical Trials Through Advances of Signal and Image Processing brings together the knowledge of the basic principles of the field of light-biological tissue interaction, detection methods, data processing techniques, and research, diagnostic and clinical applications. It is suitable for new entrants, while also highlighting the latest developments for experts in the field. This volume includes perspectives by leading experts from the biophotonics, biomedical engineering, and data science communities. The reader will receive a basic grounding in the key theoretical principles and practical components of biophotonics and biosensing. Wo...
Neuromorphic Photonic Devices and Applications synthesizes the most critical advances in photonic neuromorphic models, photonic material platforms and accelerators for neuromorphic computing. The book discusses fields and applications that can leverage these new platforms. A brief review of the historical development of the field is followed by a discussion of the emerging 2D photonic materials platforms and recent work in implementing neuromorphic models and 3D neuromorphic systems. The application of artificial intelligence (AI), such as neuromorphic models to inverse design neuromorphic materials and devices and predict performance challenges is discussed throughout. Finally, a comprehens...
Ferroelectric materials have been and still are widely used in many applications, that have moved from sonar towards breakthrough technologies such as memories or optical devices. This book is a part of a four volume collection (covering material aspects, physical effects, characterization and modeling, and applications) and focuses on the characterization of ferroelectric materials, including structural, electrical and multiphysic aspects, as well as innovative techniques for modeling and predicting the performance of these devices using phenomenological approaches and nonlinear methods. Hence, the aim of this book is to provide an up-to-date review of recent scientific findings and recent advances in the field of ferroelectric system characterization and modeling, allowing a deep understanding of ferroelectricity.
The book provides an explanation of the operation of photovoltaic devices from a broad perspective that embraces a variety of materials concepts, from nanostructured and highly disordered organic materials, to highly efficient devices such as the lead halide perovskite solar cells. The book establishes from the beginning a simple but very rich model of a solar cell, in order to develop and understand step by step the photovoltaic operation according to fundamental physical properties and constraints. It emphasizes the aspects pertaining to the functioning of a solar cell and the determination of limiting efficiencies of energy conversion. The final chapters of the book establish a more refined and realistic treatment of the many factors that determine the actual performance of experimental devices: transport gradients, interfacial recombination, optical losses and so forth. The book finishes with a short review of additional important aspects of solar energy conversion, such as the photonic aspects of spectral modification, and the direct conversion of solar photons to chemical fuel via electrochemical reactions.
Research on advanced energy conversion devices such as solar cells has intensified in the last two decades. A broad landscape of candidate materials and devices were discovered and systematically studied for effective solar energy conversion and utilization. New concepts have emerged forming a rather powerful picture embracing the mechanisms and limitation to efficiencies of different types of devices. The Physics of Solar Energy Conversion introduces the main physico-chemical principles that govern the operation of energy devices for energy conversion and storage, with a detailed view of the principles of solar energy conversion using advanced materials. Key Features include: Highlights rec...