You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Follow...
Compact antennas are a subject of growing interest from industry and scientific community to equip wireless communicating objects. The need for high performance small antennas and RF front ends is the challenge for future and next generation mobile devices. This book brings the body of knowledge on compact antennas into a single comprehensive volume. It is designed to meet the needs of electrical engineering and physics students to the senior undergraduate and beginning graduate levels, and those of practicing engineers.
The visionary science behind the digital human twins that will enhance our health and our future Virtual You is a panoramic account of efforts by scientists around the world to build digital twins of human beings, from cells and tissues to organs and whole bodies. These virtual copies will usher in a new era of personalized medicine, one in which your digital twin can help predict your risk of disease, participate in virtual drug trials, shed light on the diet and lifestyle changes that are best for you, and help identify therapies to enhance your well-being and extend your lifespan—but thorny challenges remain. In this deeply illuminating book, Peter Coveney and Roger Highfield reveal wha...
Optical metamaterials are an exciting new field in optical science. A rapidly developing class of these metamaterials are those that allow the manipulation of volume and surface electromagnetic waves in desirable ways by suitably structuring the surfaces they interact with. They have applications in a variety of fields, such as materials science, photovoltaic technology, imaging and lensing, beam shaping and lasing. Describing techniques and applications, this book is ideal for researchers and professionals working in metamaterials and plasmonics, as well as those just entering this exciting new field. It surveys different types of structured surfaces, their design and fabrication, their unusual optical properties, recent experimental observations and their applications. Each chapter is written by an expert in that area, giving the reader an up-to-date overview of the subject. Both the experimental and theoretical aspects of each topic are presented.
Metamaterials and plasmonics are cross-disciplinary fields that are emerging into the mainstream of many scientific areas. Examples of scientific and technical fields which are concerned are electrical engineering, micro- and nanotechnology, microwave engineering, optics, optoelectronics, and semiconductor technologies. In plasmonics, the interplay between propagating electromagnetic waves and free-electron oscillations in materials are exploited to create new components and applications. On the other hand, metamaterials refer to artificial composites in which small artificial elements, through their collective interaction, creates a desired and unexpected macroscopic response function that ...
This text is intended to help expand knowledge of electromagnetic theory. It integrates principles of quantum physics to electromagnetics with the aim of producing electromagnetic devices with more desirable performance features.
Table of Contents Using HBMO Algorithm to Optimal Sizing & Sitting of Distributed Generation in Power System Noradin Ghadimi 1 – 8 Management of Urban Parking Lot Energy Efficiency with the Application of Wind Turbine and LED lights Bekir Z Yuksek, Ulan Dakeev 9 – 14 Indirect Vector Control of Three Phase Induction Motor using PSIM Nagulapati Kiran 15 – 24 Improved Dynamic Response of Buck Converter using Fuzzy Controller Nagulapati Kiran, Ch Varaha Narasimha Raja 25 – 36 Sliding Mode Control of Buck Converter Nagulapati Kiran 37 – 44 Two Parameter Controller for a Single Machine Infinite Bus System Ch. Varaha Narasimha Raja 45 – 50 A Hybrid Hardware Verification Technique in FPGA Design Mojtaba.Dehghani Firouzabadi, Hossein Heidari 51 – 54 A Genuine Random Sequential Multi-signature Scheme Yonglong Tang 55 – 68
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transforma...
A lively exploration of how invisibility has gone from science fiction to fact Is it possible for something or someone to be made invisible? This question, which has intrigued authors of science fiction for over a century, has become a headline-grabbing topic of scientific research. In this book, science writer and optical physicist Gregory J. Gbur traces the science of invisibility from its sci-fi origins in the nineteenth-century writings of authors such as H. G. Wells and Fitz James O'Brien to modern stealth technology, invisibility cloaks, and metamaterials. He explores the history of invisibility and its science and technology connections, including the discovery of the electromagnetic spectrum, the development of the atomic model, and quantum theory. He shows how invisibility has moved from fiction to reality, and he questions the hidden paths that lie ahead for researchers. This is not only the story of invisibility but also the story of humankind's understanding of the nature of light itself, and of the many fascinating figures whose discoveries advanced this knowledge.
This volume presents a comprehensive perspective on the global scientific, technological, and societal impact of nanotechnology since 2000, and explores the opportunities and research directions in the next decade to 2020. The vision for the future of nanotechnology presented here draws on scientific insights from U.S. experts in the field, examinations of lessons learned, and international perspectives shared by participants from 35 countries in a series of high-level workshops organized by Mike Roco of the National Science Foundation (NSF), along with a team of American co-hosts that includes Chad Mirkin, Mark Hersam, Evelyn Hu, and several other eminent U.S. scientists. The study performed in support of the U.S. National Nanotechnology Initiative (NNI) aims to redefine the R&D goals for nanoscale science and engineering integration and to establish nanotechnology as a general-purpose technology in the next decade. It intends to provide decision makers in academia, industry, and government with a nanotechnology community perspective of productive and responsible paths forward for nanotechnology R&D.