You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
No detailed description available for "Inverse Problems of Mathematical Physics".
This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include... the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics.
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrodinger equation). The book will be useful to researchers and graduate students working in partial differential equations and mathematical physics.
Physical formulations leading to ill-posed problems Basic concepts of the theory of ill-posed problems Analytic continuation Boundary value problems for differential equations Volterra equations Integral geometry Multidimensional inverse problems for linear differential equations
This book presents papers that originally appeared in the Japanese journal Sugaku. The papers explore the relationship between number theory, algebraic geometry, and differential geometry.
This collection is designed to acquaint readers with advances in Radon transforms carried out in the former Soviet Union. The papers focus on mathematical problems related to applications of Radon transforms. Some of the problems arose from practical tomography, while others are theoretical problems originating in tomography. The book should be of use to mathematicians working in integral geometry and mathematical problems of tomography, as well as scientists who work on inverse problems and their computer realization.
This book presents papers in the general area of mathematical analysis as it pertains to probability and statistics, dynamical systems, differential equations, and analytic function theory. Among the topics discussed are: stochastic differential equations, spectra of the Laplacian and Schrödinger operators, nonlinear partial differential equations which generate dissipative dynamical systems, fractal analysis on self-similar sets, and the global structure of analytic functions.