You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A comprehensive treatment of Age of Information, this cutting-edge text includes detailed exposition and real-world applications.
This book comprises a set of chapters that introduce various topics pertinent to novel approaches towards enhancing cyber-physical measures for increased security and resilience levels in control systems. The unifying theme of these approaches lies in the utilization of knowledge and models of the physical systems, rather than an attempt to reinvigorate conventional IT-based security measures. The contributing authors present perspectives on network security, game theory, and control, as well as views on how these disciplines can be combined to design resilient, safe, and secure control systems. The book explores how attacks in different forms, such as false data injections and denial-of-service can be very harmful, and may not be detected unless the security measures exploit the physical models. Several applications are discussed, power systems being considered most thoroughly. Because of its interdisciplinary nature—techniques from systems control, game theory, signal processing and computer science all make contributions—Security and Resilience of Control Systems will be of interest to academics, practitioners and graduate students with a broad spectrum of interests.
The problem of jointly designing a robust controller and an intelligent scheduler for networked control systems (NCSs) is addressed in this thesis. NCSs composing of multiple plants that share a single channel communication network with uncertain time-varying transmission times are modeled as switched polytopic systems with additive norm-bounded uncertainty. Switching is deployed to represent scheduling, the polytopic uncertainty to overapproximatively describe the uncertain time-varying transmission times. Based on the resulting NCS model and a state feedback control law, the control and scheduling codesign problem is then introduced and formulated as a robust (minimax) optimization problem...
Readers of this book will be shown how, with the adoption of ubiquituous sensing, extensive data-gathering and forecasting, and building-embedded advanced actuation, intelligent building systems with the ability to respond to occupant preferences in a safe and energy-efficient manner are becoming a reality. The articles collected present a holistic perspective on the state of the art and current research directions in building automation, advanced sensing and control, including: model-based and model-free control design for temperature control; smart lighting systems; smart sensors and actuators (such as smart thermostats, lighting fixtures and HVAC equipment with embedded intelligence); and...
This volume contains the proceedings of the Fourth Workshop on Hybrid - stems: Computation and Control (HSCC 2001) held in Rome, Italy on March 28-30, 2001. The Workshop on Hybrid Systems attracts researchers from in- stry and academia interested in modeling, analysis, synthesis, and implemen- tion of dynamic and reactive systems involving both discrete (integer, logical, symbolic) and continuous behaviors. It is a forum for the discussion of the - test developments in all aspects of hybrid systems, including formal models and computational representations, algorithms and heuristics, computational tools, and new challenging applications. The Fourth HSCC International Workshop continues the s...
Controlling uncertain networked control system (NCS) with limited communication among subcomponents is a challenging task and event-based sampling helps resolve the issue. This book considers event-triggered scheme as a transmission protocol to negotiate information exchange in resilient control for NCS via a robust control algorithm to regulate the closed loop behavior of NCS in the presence of mismatched uncertainty with limited feedback information. It includes robust control algorithm for linear and nonlinear systems with verification. Features: Describes optimal control based robust control law for event-triggered systems. States results in terms of Theorems and Lemmas supported with detailed proofs. Presents the combination of network interconnected systems and robust control strategy. Includes algorithmic steps for precise understanding of the control technique. Covers detailed problem statement and proposed solutions along with numerical examples. This book aims at Senior undergraduate, Graduate students, and Researchers in Control Engineering, Robotics and Signal Processing.
This volume is concerned with the control and dynamics of time delay systems; a research field with at least six-decade long history that has been very active especially in the past two decades. In parallel to the new challenges emerging from engineering, physics, mathematics, and economics, the volume covers several new directions including topology induced stability, large-scale interconnected systems, roles of networks in stability, and new trends in predictor-based control and consensus dynamics. The associated applications/problems are described by highly complex models, and require solving inverse problems as well as the development of new theories, mathematical tools, numerically-tractable algorithms for real-time control. The volume, which is targeted to present these developments in this rapidly evolving field, captures a careful selection of the most recent papers contributed by experts and collected under five parts: (i) Methodology: From Retarded to Neutral Continuous Delay Models, (ii) Systems, Signals and Applications, (iii): Numerical Methods, (iv) Predictor-based Control and Compensation, and (v) Networked Control Systems and Multi-agent Systems.
pt. 1. List of patentees.--pt. 2. Index to subjects of inventions.
This monograph provides a comprehensive exploration of new tools for modelling, analysis, and control of networked dynamical systems. Expanding on the authors’ previous work, this volume highlights how local exchange of information and cooperation among neighboring agents can lead to emergent global behaviors in a given networked dynamical system. Divided into four sections, the first part of the book begins with some preliminaries and the general networked dynamical model that is used throughout the rest of the book. The second part focuses on synchronization of networked dynamical systems, synchronization with non-expansive dynamics, periodic solutions of networked dynamical systems, and...