You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
As optical technologies move closer to the core of modern computer architecture, there arise many challenges in building optical capabilities from the network to the motherboard. Rapid advances in integrated optics technologies are making this a reality. However, no comprehensive, up-to-date reference is available to the technologies and principles underlying the field. The Encyclopedic Handbook of Integrated Optics fills this void, collecting the work of 53 leading experts into a compilation of the most important concepts, phenomena, technologies, and terms covering all related fields. This unique book consists of two types of entries: the first is a detailed, full-length description; the o...
Compound Semiconductors 1995 focuses on emerging applications for GaAs and other compound semiconductors, such as InP, GaN, GaSb, ZnSe, and SiC, in the electronics and optoelectronics industries. The book presents the research and development work in all aspects of compound semiconductors. It reflects the maturity of GaAs as a semiconductor material and the rapidly increasing pool of research information on many other compound semiconductors. Covering the full breadth of the subject, from growth through processing to devices and integrated circuits, this volume provides researchers in materials science, device physics, condensed matter physics, and electrical and electronic engineering with a comprehensive overview of developments in this well-established research area.
Compound Semiconductors 1998 explores research and development in key semiconductor materials and III-V compounds such as gallium arsenide, indium phosphide, gallium nitride, silicon germanium, and silicon carbide. It critically assesses progress in key technologies such as reliability assessment and reports on advances in the use of semiconductors in modern electronic and optoelectronic devices. Coverage in this volume reflects the increased interest and research funding in nitride-based materials; wide band-gap devices; mobile communications, including III-V-based transistors and photonic devices; crystal growth and characterization; and nanoscale phenomena, such as quantum wires, dots, and other low dimensional structures.
The development of miniaturized and ruggedized optical circuits, containing a number of optical and perhaps also electronic components integrated on the same substrate, and performing useful optical functions - this is the goal of the key technologies for future systems of communication, of instrumenta tion, and of general signal processing; it is expected to combine and to complement the established technologies of microelectronics, optoelectronics, and fiber-optics. Today, after more than fifteen years of research on integrated optics, this goal appears to be almost within reach. The theoretical problems of 1ight propagation and of numerous forms of coupling and interactions in integrated-...
None