You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Geophysicists use seismic signals to image structures in the Earth's interior, to understand the mechanics of earthquake and volcanic sources, and to estimate their associated hazards. Keiiti Aki developed pioneering quantitative methods for extracting useful information from various portions of observed seismograms and applied these methods to many problems in the above fields. This volume honors Aki's contributions with review papers and results from recent applications by his former students and scientific associates pertaining to topics spawned by his work. Discussed subjects include analytical and numerical techniques for calculating dynamic rupture and radiated seismic waves, stochastic models used in engineering seismology, earthquake and volcanic source processes, seismic tomography, properties of lithospheric structures, analysis of scattered waves, and more. The volume will be useful to students and professional geophysicists alike.
This is the first book to really make sense of the dizzying array of information that has emerged in recent decades about earthquakes. Susan Hough, a research seismologist in one of North America's most active earthquake zones and an expert at communicating this complex science to the public, separates fact from fiction. She fills in many of the blanks that remained after plate tectonics theory, in the 1960s, first gave us a rough idea of just what earthquakes are about. How do earthquakes start? How do they stop? Do earthquakes occur at regular intervals on faults? If not, why not? Are earthquakes predictable? How hard will the ground shake following an earthquake of a given magnitude? How ...
None
This IMA Volume in Mathematics and its Applications STOCHASTIC MODELS IN GEOSYSTEMS is based on the proceedings of a workshop with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Stanislav A. Molchanov and Wojbor A. Woyczynski for their hard work in organizing this meeting and in edit ing the proceedings. We also take this opportunity to thank the National Science Foundation, the Office of N aval Research, the Army Research Of fice, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE A workshop on Stochastic Models in Geosystems...
This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves,...