You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Switch-Mode Power Converters introduces an innovative, highly analytical approach to symbolic, closed-form solutions for switched-mode power converter circuits. This is a highly relevant topic to power electronics students and professionals who are involved in the design and analysis of electrical power converters. The author uses extensive equations to explain how solid-state switches convert electrical voltages from one level to another, so that electronic devices (e.g., audio speakers, CD players, DVD players, etc.) can use different voltages more effectively to perform their various functions. Most existing comparable books published as recently as 2002 do not discuss closed-loop operati...
For the first time in power electronics, this comprehensive treatment of switch-mode DC/DC converter designs addresses many analytical closed form equations such as duty cycle prediction, output regulation, output ripple, control loop-gain, and steady state time-domain waveform. Each of these equations are given various topologists and configurations, including forward, flyback, and boost converters. Pulse Width Modulated DC/DC Converters begins with a detailed approach to the quiescent operating locus of a power plant under open-loop. The reader is then led through other supporting circuits once again in the quiescent condition. These exercises result in the close-loop formulations of the s...
Power Converter with Digital Filter Feedback Control presents a logical sequence that leads to the identification, extraction, formulation, conversion, and implementation for the control function needed in electrical power equipment systems. This book builds a bridge for moving a power converter with conventional analog feedback to one with modern digital filter control and enlists the state space averaging technique to identify the core control function in analytical, close form in s-domain (Laplace). It is a useful reference for all professionals and electrical engineers engaged in electrical power equipment/systems design, integration, and management. Offers logical sequences to identification, extraction, formulation, conversion, and implementation for the control function needed Contains step-by-step instructions on how to take existing analog designed power processors and move them to the digital realm Presents ways to extract gain functions for many power converters' power processing stages and their supporting circuitry
Power Converter with Digital Filter Feedback Control presents a logical sequence that leads to the identification, extraction, formulation, conversion, and implementation for the control function needed in electrical power equipment systems. This book builds a bridge for moving a power converter with conventional analog feedback to one with modern digital filter control and enlists the state space averaging technique to identify the core control function in analytical, close form in s-domain (Laplace). It is a useful reference for all professionals and electrical engineers engaged in electrical power equipment/systems design, integration, and management. - Offers logical sequences to identification, extraction, formulation, conversion, and implementation for the control function needed - Contains step-by-step instructions on how to take existing analog designed power processors and move them to the digital realm - Presents ways to extract gain functions for many power converters' power processing stages and their supporting circuitry
Power Processing Circuits Design seamlessly infuses important mathematical models and approaches into the optimization of power processing circuits and linear systems. The work unites a constellation of challenging mathematical topics centered on differential equations, linear algebra and implicit functions, with multiple perspectives from electrical, mathematical and physical viewpoints, including power handling components, power filtering and power regulation. Power applications covered encompass first order RC and RL, second order RLC circuits with periodic drives, constant current source, close-loop feedback practices, control loop types, linear regulator, switch-mode regulator and rotation control. - Outlines the physical meaning of differential forms and integral forms in designing circuits for power applications - Delivers techniques to set up linear algebraic matrix representations of complex circuits - Explores key approaches obtaining steady state and describes methods using implicit functions for close-loop representation - Describes how to implement vector representation of rotational driving sources - Supplemented by MATLAB implementations
This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also provided
In 2020 we lost Noel Rose, co-editor of the classic Infection and Autoimmunity. To honor and respect his work, a group of experts in the field have taken the initiative to make this book perpetual. The third edition of Infection and Autoimmunity updates all the recent and leading papers on infection and autoimmunity, in addition to a dedicated section on to the correlation between SARS-CoV-2 infection and autoimmunity. From the very beginning of the COVID-19 pandemic, numerous papers have been published, including studies conducted by the editors and authors of the book, on COVID-19 and autoimmunity, and therefore this knowledge has been incorporated into this new edition. The addition and e...