You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A thermodynamically consistent description of the transport across interfaces in mixtures has for a long time been an open issue. This research clarifies that the interface between a liquid and a vapor in a mixture is in local equilibrium during evaporation and condensation. It implies that the thermodynamics developed for interfaces by Gibbs can be applied also away from equilibrium, which is typically the case in reality. A description of phase transitions is of great importance for the understanding of both natural and industrial processes. For example, it is relevant for the understanding of the increase of CO2 concentration in the atmosphere, or improvements of efficiency in distillation columns. This excellent work of luminescent scientific novelty has brought this area a significant step forward. The systematic documentation of the approach will facilitate further applications of the theoretical framework to important problems.
The purpose of this book is to encourage the use of non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. With large coupling effects between the transport of heat, mass, charge and chemical reactions at surfaces, it is important to know how one should properly integrate across systems where different phases are in contact. No other book gives a prescription of how to set up flux equations for transports across heterogeneous systems.The authors apply the thermodynamic description in terms of excess densities, developed by Gibbs for equilibrium, to non-equilibrium systems. The treatment is restricted to transport into and through the surface. Using local equilibrium together with the balance equations for the surface, expressions for the excess entropy production of the surface and of the contact line are derived. Many examples are given to illustrate how the theory can be applied to coupled transport of mass, heat, charge and chemical reactions; in phase transitions, at electrode surfaces and in fuel cells. Molecular simulations and analytical studies are used to add insight.
This book utilizes non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. There are large coupling effects between transport of heat, mass, charge and chemical reactions at surfaces, and it is important to know how one should properly integrate across systems where different phases are in contact. There is no other book available today that gives a prescription of how to set up flux equations for transports across heterogeneous systems.
The Industrial Revolution meets the quantum-technology revolution! A steampunk adventure guide to how mind-blowing quantum physics is transforming our understanding of information and energy. Victorian era steam engines and particle physics may seem worlds (as well as centuries) apart, yet a new branch of science, quantum thermodynamics, reenvisions the scientific underpinnings of the Industrial Revolution through the lens of today's roaring quantum information revolution. Classical thermodynamics, understood as the study of engines, energy, and efficiency, needs reimagining to take advantage of quantum mechanics, the basic framework that explores the nature of reality by peering at minute m...
The purpose of this book is to encourage the use of non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. With large coupling effects between the transport of heat, mass, charge and chemical reactions at surfaces, it is important to know how one should properly integrate across systems where different phases are in contact. No other book gives a prescription of how to set up flux equations for transports across heterogeneous systems.The authors apply the thermodynamic description in terms of excess densities, developed by Gibbs for equilibrium, to non-equilibrium systems. The treatment is restricted to transport into and through the surface. Using local equilibrium together with the balance equations for the surface, expressions for the excess entropy production of the surface and of the contact line are derived. Many examples are given to illustrate how the theory can be applied to coupled transport of mass, heat, charge and chemical reactions; in phase transitions, at electrode surfaces and in fuel cells. Molecular simulations and analytical studies are used to add insight.
This book presents the theory of non-equilibrium thermodynamics in a pedagogical and practical way that targets engineering applications. In it, tools to take advantage of the second as well as the first law of thermodynamics are provided.The book starts by explaining how the entropy production is the cornerstone of non-equilibrium thermodynamics — the basis to describe coupled transport phenomena, which are highly relevant for several renewable energy technologies. The book also uses entropy production as the foundation for a systematic methodology to analyze and improve energy efficiency, and shows how entropy production can be used to test the consistency of transport models. The link b...
This book offers a practical guide to Agent Based economic modeling, adopting a “learning by doing” approach to help the reader master the fundamental tools needed to create and analyze Agent Based models. After providing them with a basic “toolkit” for Agent Based modeling, it present and discusses didactic models of real financial and economic systems in detail. While stressing the main features and advantages of the bottom-up perspective inherent to this approach, the book also highlights the logic and practical steps that characterize the model building procedure. A detailed description of the underlying codes, developed using R and C, is also provided. In addition, each didactic...
Project management lessons learned on the Big Dig, America's biggest megaproject, by a core member responsible for its daily operations In Megaproject Management, a central member of the Big Dig team reveals the numerous risks, challenges, and accomplishments of the most complex urban infrastructure project in the history of the United States. Drawing on personal experience and interviews with project engineers, executive oversight commission officials, and core managers, the author, a former deputy counsel and risk manager for the Big Dig, develops new insights as she describes the realities of day-to-day management of the project from a project manager's perspective. The book incorporates ...
Irreversible thermodynamics is an extension of classical thermodynamics to give a unified method of treating transport processes. This book develops the theoretical basis and relates it to reality by examples. These theories are then applied to solve some important problems within varied fields of science and technology. To facilitate understanding, the basic equations are derived in a simple manner, using a minimum of mathematics.
Chinese inflation, particularly non-food inflation, has been surprisingly modest in recent years. We find that supply factors, including those captured through upstream foreign commodity and producer prices, have been important drivers of non-food inflation, as has foreign demand for Chinese goods. Domestic demand and monetary conditions seem less important, possibly reflecting a large domestic output gap generated by many years of high investment. Inflation varies systemically within China, with richer (and urban) provinces having lower, more stable, inflation, but this urban inflation also influence that in lower-income provinces. Higher Mainland food inflation also raises inflation in non-Mainland China.