You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website.
None
Stochastic finance and financial engineering have been rapidly expanding fields of science over the past four decades, mainly due to the success of sophisticated quantitative methodologies in helping professionals manage financial risks. In recent years, we have witnessed a tremendous acceleration in research efforts aimed at better comprehending, modeling and hedging this kind of risk. These two volumes aim to provide a foundation course on applied stochastic finance. They are designed for three groups of readers: firstly, students of various backgrounds seeking a core knowledge on the subject of stochastic finance; secondly financial analysts and practitioners in the investment, banking an...
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
This volume contains the proceedings of the Korea-Japan Conference on Algebraic Geometry in honor of Igor Dolgachev on his sixtieth birthday. The articles in this volume explore a wide variety of problems that illustrate interactions between algebraic geometry and other branches of mathematics. Among the topics covered by this volume are algebraic curve theory, algebraic surface theory, moduli space, automorphic forms, Mordell-Weil lattices, and automorphisms of hyperkahler manifolds. This book is an excellent and rich reference source for researchers.
The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly...
This book develops a mathematical theory for finance, based on a simple and intuitive absence-of-arbitrage principle. This posits that it should not be possible to fund a non-trivial liability, starting with initial capital arbitrarily near zero. The principle is easy-to-test in specific models, as it is described in terms of the underlying market characteristics; it is shown to be equivalent to the existence of the so-called “Kelly” or growth-optimal portfolio, of the log-optimal portfolio, and of appropriate local martingale deflators. The resulting theory is powerful enough to treat in great generality the fundamental questions of hedging, valuation, and portfolio optimization. The bo...
This volume contains the proceedings of the 11th International Conference on Finite Fields and their Applications (Fq11), held July 22-26, 2013, in Magdeburg, Germany. Finite Fields are fundamental structures in mathematics. They lead to interesting deep problems in number theory, play a major role in combinatorics and finite geometry, and have a vast amount of applications in computer science. Papers in this volume cover these aspects of finite fields as well as applications in coding theory and cryptography.
This accessible introduction to the theory of stochastic processes emphasizes Levy processes and Markov processes. It gives a thorough treatment of the decomposition of paths of processes with independent increments (the Lévy-Itô decomposition). It also contains a detailed treatment of time-homogeneous Markov processes from the viewpoint of probability measures on path space. In addition, 70 exercises and their complete solutions are included.
Professor Kiyosi Ito is well known as the creator of the modern theory of stochastic analysis. Although Ito first proposed his theory, now known as Ito's stochastic analysis or Ito's stochastic calculus, about fifty years ago, its value in both pure and applied mathematics is becoming greater and greater. For almost all modern theories at the forefront of probability and related fields, Ito's analysis is indispensable as an essential instrument, and it will remain so in the future. For example, a basic formula, called the Ito formula, is well known and widely used in fields as diverse as physics and economics. This volume contains 27 papers written by world-renowned probability theorists. Th...