You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Five questions dominated the ARW on Physics and Materials Science of High Temperature Superconductors, of which this book forms the permanent record. Briefly, these are: (i) How close are we to a unified theory? The consensus is that we are not. (ii) Flux pinning: can it be achieved in bulk materials? Still an open question. The following three questions are related. (iii) Can grain boundary contributions be brought under control? (iv) What is the real requirement for purity and general chemistry control? (v)What is the practical outlook for bulk products - tapes and wires? One of the conclusions is that the geometry and dimensions in thin films are the key parameters that facilitate the realization of high current densities and, consequently, their commercial application. On the other hand, the very large number of poorly understood microstructural, chemical and mechanical variables involved in the preparation of bulk materials are currently prohibiting large scale commercialization of wires and tapes.
This conference is the second on the Science and Technology of Thin Film Superconductors. It proved to be an excellent forum for these specialists in thin film superconductivity. The conference, held April 30-May 4, 1990, in Denver, Colorado, hosted 170 researchers from 17 countries. The response to the conference again emphasized the need for a meeting devoted to the science and technology of thin film superconductors. The breadth of artic1es and advances made in this technology since the first conference in November 1988, reflect on the maturity of the topic. These proceedings contain artic1es on deposition methods by sputtering, e1ectron beam evaporation, resistive evaporation, laser abla...
None
Since the First International Symposium on Superconductivity (ISS '88) was held in Nagoya, Japan in 1988, significant advances have been achieved in a wide range of high temperature superconductivity research. Although the T c's of recently discovered oxide superconductors still do not exceed the record high value of 125K reported before that meeting, the enrichment in the variety of materials should prove useful to the investigation of the fundamental mechanism of superconductiv ity in these exotic materials. The discovery of the n-type superconducting oxides proved to oppose the previously held empirical fact that the charge carriers in all oxide superconductors were holes. In addition, op...
The book "State-of-the-art of Quantum Dot System Fabrications" contains ten chapters and devotes to some of quantum dot system fabrication methods that considered the dependence of shape, size and composition parameters on growth methods and conditions such as temperature, strain and deposition rates. This is a collaborative book sharing and providing fundamental research such as the one conducted in Physics, Chemistry, Material Science, with a base text that could serve as a reference in research by presenting up-to-date research work on the field of quantum dot systems.
Presents and discusses fundamental aspects and key implications of noise and fluctuations in various fields of science, technology and sociology, with special emphasis in 1/f fluctuations in biology. There are contributions from leading international experts.
Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localizati...