You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Completely devoted to applicati on of models to opti mize the use of limited water and nutrients in various climates, this collecti on will inspire confi dence in the capacity of modeling to tackle the biggest threats to secure agriculture. To obtain the most producti on from available water while maintaining natural resources, we need whole system–based quanti tati ve knowledge and tools to help select appropriate crops and manage water and associated inputs on a site-specifi c basis under changing climate. Site-specifi c experimental results are available for limited locati ons, limited periods of ti me, and limited management opti ons. Well-tested process models of cropping systems can extend fi eld research results to long-term weather conditi ons, as well as other climates and soils, allowing us to explore new management opti ons. The case studies in this volume are promising examples of these kinds of soluti ons.
Modeling Processes and Their Interactions in Cropping Systems A complete discussion of soil-plant-climate-management processes In Modeling Processes and Their Interactions in Cropping Systems: Challenges for the 21st Century, a team of distinguished researchers delivers a comprehensive and up-to-date scientific textbook devoted to teaching the modeling of soil-plant-climate-management processes at the upper undergraduate and graduate levels. The book emphasizes the new opportunities and paradigms available to modern lab and field researchers and aims to improve their understanding and quantification of individual processes and their interactions. The book helps readers quantify field researc...
In the 8th book of Dr. Ahuja’s innovative “Advances in Agricultural Systems Modeling” series, authors give a look into the future of climatesmart agricultural systems, emphasizing the integration of soil, weather, vegetation and management information to predict relevant agro-ecosystem processes. Expansion of data availability, improvement of sensors, and computational power have opened opportunities in modeling and exploration of management impact. Authors give a background on model development and explain soil, plant, and climate processes and their interactions that encompass the wide range of applications of simulation models to address challenges in managing our resources and complex agricultural systems.
Crop model intercomparison and improvement are required to advance understanding of the impact of future climate change on crop growth and yield. The initial efforts undertaken in the Agriculture Model Intercomparison and Improvement Project (AgMIP) led to several observations where crop models were not adequately simulating growth and development. These studies revealed where enhanced efforts should be undertaken in experimental data to quantify the carbon dioxide × temperature × water interactions in plant growth and yield. International leaders in this area held a symposium at the 2013 ASA, CSSA, and SSSA Annual Meeting to discuss this topic. This volume in the Advances in Agricultural Systems Modeling series presents experimental observations across crops and simulation modeling outcomes and addresses future challenges in improving crop simulation models. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.
Agriculture continues to be an important sector fuelling economic growth. Rapidly changing climate is already affecting the production of food and feed, industrial crops, livestock, and seafood. In developing countries like India, agriculture and allied sectors contribute significantly to the gross domestic product. Therefore, evolving strategies to sustain a stable growth of the farming sector is essential for feeding a growing population and poverty alleviation in the face of global climate change. It is crucial to carry out a comprehensive analysis of different aspects of climate change to effectively combat its negative impacts on food production systems and landscapes and reap its poten...