You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Engineering of Chemical Reactions focuses explicitly on developing the skills necessary to design a chemical reactor for any application, including chemical production, materials processing, and environmental modeling.
Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems
This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Sumposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings.The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volum. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings.
The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulati...
Chemical reaction engineering is concerned with the exploitation of chemical reactions on a commercial scale. It's goal is the successful design and operation of chemical reactors. This text emphasizes qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and are then extended to the more complex.
One of the goals of An Introduction to Applied Statistical Thermodynamics is to introduce readers to the fundamental ideas and engineering uses of statistical thermodynamics, and the equilibrium part of the statistical mechanics. This text emphasises on nano and bio technologies, molecular level descriptions and understandings offered by statistical mechanics. It provides an introduction to the simplest forms of Monte Carlo and molecular dynamics simulation (albeit only for simple spherical molecules) and user-friendly MATLAB programs for doing such simulations, and also some other calculations. The purpose of this text is to provide a readable introduction to statistical thermodynamics, show its utility and the way the results obtained lead to useful generalisations for practical application. The text also illustrates the difficulties that arise in the statistical thermodynamics of dense fluids as seen in the discussion of liquids.
This report examines the use of these entities in nearly all cases of corruption. It builds upon case law, interviews with investigators, corporate registries and financial institutions and a 'mystery shopping' exercise to provide evidence of this criminal practice.
An updated edition of a comprehensive and authoritative chemical engineering textbook on bioseparations science, updated to include new information on topics like moment analysis, chromatography, and evaporation.
Synthetic materials are a tremendous potential resource for treating human disease. For the rational design of many of these biomaterials it is necessary to have an understanding of polymer chemistry and polymer physics. Equally important to those two fields is a quantitative understanding of the principles that govern rates of drug transport, reaction, and disappearance in physiological and pathological situations. This book is a synthesis of these principles, providing a working foundation for those in the field of drug delivery. It covers advanced drug delivery and contemporary biomaterials.