You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.
The series "Studies in Computational Intelligence" (SCI) publishes new developments and advances in the various areas of computational intelligence – quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life science, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, ...
This book focuses on next generation data technologies in support of collective and computational intelligence. The book brings various next generation data technologies together to capture, integrate, analyze, mine, annotate and visualize distributed data – made available from various community users – in a meaningful and collaborative for the organization manner. A unique perspective on collective computational intelligence is offered by embracing both theory and strategies fundamentals such as data clustering, graph partitioning, collaborative decision making, self-adaptive ant colony, swarm and evolutionary agents. It also covers emerging and next generation technologies in support o...
One of the most challenging issues for the intelligent decision systems is to effectively manage the large-scale complex distributed environments such as computational clouds, grids, ad hoc and P2P networks, under the different types of users, their relations, and real-world uncertainties. In this context the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. These administrators conform to different sets of rules and configuration directives, and can impose different usage policies on the system users. Additionally, uncertainties are presented in various types of information that are incomplet...
The series Studies in Computational Intelligence (SCI) publishes new developments and advances in the various areas of computational intelligence – quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life science, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fu...
Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-related communication, this work applies sophisticated machine learning techniques to a large body of email data. Several effective models are proposed that can aid with the prioritization of incoming messages, help with coordination of shared tasks, improve tracking of deadlines, and prevent disastrous information leaks. Carvalho presents many data-driven techniques that can positively impact work-related email communication and offers robust models that may be successfully applied to future machine learning tasks.
This book has brought 24 groups of experts and active researchers around the world together in image processing and analysis, video processing and analysis, and communications related processing, to present their newest research results, exchange latest experiences and insights, and explore future directions in these important and rapidly evolving areas. It aims at increasing the synergy between academic and industry professionals working in the related field. It focuses on the state-of-the-art research in various essential areas related to emerging technologies, standards and applications on analysis, processing, computing, and communication of multimedia information. The target audience of...
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases e...
Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments. Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.
Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR an...