You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The 2nd Edition of this heralded companion to Braunwald's Heart Disease explores the molecular mechanisms of cardiology and the scientific advances that are changing the practice of cardiology today. International experts discuss the role of genetics in cardiovascular disease the molecular basis of ischemic disease, thrombosis and hypertension genetic mapping approaches to inherited disorders biologically targeted agents for hypertension and heart failure and much more. Abundant figures and tables illustrate key concepts. Addresses most common cardiovascular problems from a molecular standpoint. Explores developing treatments for cardiovascular problems based on genetics. Provides references to Braunwald's Heart Disease, 6th Edition Examines today's cutting edge advances in molecular cardiology and the future of gene therapy, Examines the implications of cellular cholesterol metabolism in health and disease. . Delivers up-to-date information on understanding the origin of inherited disease.
This is the second edition of the comprehensive, concise summary of apoptosis research. It covers the major concepts, molecular architecture, the biochemical pathways, and pathophysiological significance of apoptosis. This book provides a guideline of standard biochemical and cell biologic approaches to apoptosis bench work with an emphasis on translational clinical applications for immune disorders, cancer research, ischemia, and neuronal degeneration. Since the original publication in 2003, the apoptosis field has expanded rapidly – chapters not only need to be revised and expanded, but there is a need for all new chapters covering exciting advances in bioinformatics, systems biology, oxidative stress, etc.
Short non-coding RNA molecules, microRNAs (miRNAs), post-transcriptionally regulate gene expression in living cells. In recent years, miRNAs have been found in a wide spectrum of mammalian body fluids including blood plasma, saliva, urine, milk, seminal plasma, tears and amniotic fluid as extracellular circulating nuclease-resistant entities. The changes in miRNA spectra observed in certain fluids correlated with various pathological conditions suggesting that extracellular miRNAs can serve as informative biomarkers for certain diseases including cancer. However, the mechanism of generation and a biological role of extracellular miRNAs remain unclear. The current theories regarding extracellular miRNA origin and function suggest that these miRNAs can be either non-specific ‘by-products’ of cellular activity and cell death or specifically released cell-cell signaling messengers. The goal of this Research Topic is to bring together up-to-date knowledge about the extracellular miRNA and its role in disease diagnostics and, possibly, inter-cellular communication.
Epigenetics in Cardiovascular Disease, a new volume in the Translational Epigenetics series, offers a comprehensive overview of the epigenetics mechanisms governing cardiovascular disease development, as well as instructions in research methods and guidance in pursing new studies. More than thirty international experts provide an (i) overview of the epigenetics mechanisms and their contribution to cardiovascular disease development, (i) high-throughput methods for RNA profiling including single-cell RNA-seq, (iii) the role of nucleic acid methylation in cardiovascular disease development, (iv) epigenetic actors as biomarkers and drug targets, (v) and the potential of epigenetics to advance p...
This special issue of Molecular and Cellular Biochemistry contains original research papers as well as invited reviews focused in the field of cardiac metabolism and its regulation under normal and disease conditions. These papers cover many areas under intensive and rapid development such as the regulation of fatty acid oxidation in the heart, the role of cardiac glycogen during ischemia, the role of CPT I isoenzymes, the pathophysiology of diabetic cardiomyopathy, cardiac protection through regulation of energy production, the role of fatty acid binding protein under normal and pathological conditions, and several other important topics in this area of research. We hope that this special issue of Molecular and Cellular Biochemistry provides an up-to-date source of information for scientists and clinicians interested in the mechanism by which cardiac metabolism is regulated in health and disease and the mechanistic relationship between disturbances in cardiac metabolism and the genesis of cardiovascular diseases.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.