Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Function Spaces, 1
  • Language: en
  • Pages: 495

Function Spaces, 1

This is the first part of the second revised and extended edition of the well established book "Function Spaces" by Alois Kufner, Oldřich John, and Svatopluk Fučík. Like the first edition this monograph is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces in their research or lecture courses. This first volume is devoted to the study of function spaces, based on intrinsic properties of a function such as its size, continuity, smoothness, various forms of a control over the mean oscillation, and so on. The second volume will be dedicated to the study of function spaces of Sobolev type, in which the key notion is the weak derivative of a function of several variables.

Saddle-Point Problems and Their Iterative Solution
  • Language: en
  • Pages: 147

Saddle-Point Problems and Their Iterative Solution

  • Type: Book
  • -
  • Published: 2018-11-19
  • -
  • Publisher: Springer

This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.

Interpolation Theory and Applications
  • Language: en
  • Pages: 370

Interpolation Theory and Applications

This volume contains the Proceedings of the Conference on Interpolation Theory and Applications in honor of Professor Michael Cwikel (Miami, FL, 2006). The central topic of this book is interpolation theory in its broadest sense, with special attention to its applications to analysis. The articles include applications to classical analysis, harmonic analysis, partial differential equations, function spaces, image processing, geometry of Banach spaces, and more. This volume emphasizes remarkable connections between several branches of pure and applied analysis. Graduate students and researchers in analysis will find it very useful.

Sobolev Spaces in Mathematics III
  • Language: en
  • Pages: 360

Sobolev Spaces in Mathematics III

This volume, marking the centenary of S.L. Sobolev’s birth, presents the latest the results on some important problems of mathematical physics. The book contains two short biographical articles and unique archive photos of S. Sobolev.

New Trends and Results in Mathematical Description of Fluid Flows
  • Language: en
  • Pages: 190

New Trends and Results in Mathematical Description of Fluid Flows

  • Type: Book
  • -
  • Published: 2018-09-26
  • -
  • Publisher: Springer

The book presents recent results and new trends in the theory of fluid mechanics. Each of the four chapters focuses on a different problem in fluid flow accompanied by an overview of available older results. The chapters are extended lecture notes from the ESSAM school "Mathematical Aspects of Fluid Flows" held in Kácov (Czech Republic) in May/June 2017. The lectures were presented by Dominic Breit (Heriot-Watt University Edinburgh), Yann Brenier (École Polytechnique, Palaiseau), Pierre-Emmanuel Jabin (University of Maryland) and Christian Rohde (Universität Stuttgart), and cover various aspects of mathematical fluid mechanics – from Euler equations, compressible Navier-Stokes equations and stochastic equations in fluid mechanics to equations describing two-phase flow; from the modeling and mathematical analysis of equations to numerical methods. Although the chapters feature relatively recent results, they are presented in a form accessible to PhD students in the field of mathematical fluid mechanics.

Principles of Continuum Mechanics
  • Language: en
  • Pages: 256

Principles of Continuum Mechanics

  • Type: Book
  • -
  • Published: 2019-05-31
  • -
  • Publisher: Springer

This book addresses the basic concepts of continuum mechanics, that is, the classical field theory of deformable bodies. The theory is systematically developed, from the kinematics to the balance equations, the material theory, and the entropy principles. In turn, the linear-elastic solids, the ideal liquid and the Newtonian liquid are presented in detail as concrete applications. The book concludes by covering the theory of small motions in a medium with a finite prestress. In general, the emphasis is on presenting the content in a clear and straightforward way that requires only an elementary grasp of calculus, linear algebra, and Newtonian mechanics. The book is intended for students of physics, mechanics, engineering and the geosciences, as well as applied mathematics, with a year or more of college calculus behind them.

Anisotropic hp-Mesh Adaptation Methods
  • Language: en
  • Pages: 258

Anisotropic hp-Mesh Adaptation Methods

Mesh adaptation methods can have a profound impact on the numerical solution of partial differential equations. If devised and implemented properly, adaptation significantly reduces the size of the algebraic systems resulting from the discretization, while ensuring that applicable error tolerances are met. In this monograph, drawing from many years of experience, the authors give a comprehensive presentation of metric-based anisotropic hp-mesh adaptation methods. A large part of this monograph is devoted to the derivation of computable interpolation error estimates on simplicial meshes, which take into account the geometry of mesh elements as well as the anisotropic features of the interpola...

Function Spaces, Interpolation Theory and Related Topics
  • Language: en
  • Pages: 473

Function Spaces, Interpolation Theory and Related Topics

This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.

Fourier Analysis and Partial Differential Equations
  • Language: en
  • Pages: 336

Fourier Analysis and Partial Differential Equations

  • Type: Book
  • -
  • Published: 2018-01-18
  • -
  • Publisher: CRC Press

Contains easy access to four actual and active areas of research in Fourier Analysis and PDE Covers a wide spectrum of topics in present research Provides a complete picture of state-of-the-art methods in the field Contains 200 tables allowing the reader speedy access to precise data

Sobolev Spaces in Mathematics I
  • Language: en
  • Pages: 395

Sobolev Spaces in Mathematics I

This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.