You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like “what is the minimum energy required to perform a computation?”, “what is the ultimate computational speed that a computer can achieve?” or “how long can a memory last”, are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.
From soccer kicks to the flight of birds, anthology offers the latest thinking on principles of physics and how they manifest in everyday life.
In a previous volume (ICT-Energy-Concepts Towards Zero-Power ICT; referenced below as Vol. 1), we addressed some of the fundamentals related to bridging the gap between the amount of energy required to operate portable/mobile ICT systems and the amount of energy available from ambient sources. The only viable solution appears to be to attack the gap from both sides, i.e. to reduce the amount of energy dissipated during computation and to improve the efficiency in energy-harvesting technologies. In this book, we build on those concepts and continue the discussion on energy efficiency and sustainability by addressing the minimisation of energy consumption at different levels across the ICT system stack, from hardware to software, as well as discussing energy consumption issues in high-performance computing (HPC), data centres and communication in sensor networks. This book was realised thanks to the contribution of the project ‘Coordinating Research Efforts of the ICT-Energy Community’ funded from the European Union under the Future and Emerging Technologies (FET) area of the Seventh Framework Programme for Research and Technological Development (grant agreement n. 611004).
In the early 21st century, research and development of sustainable energy harvesting (EH) technologies have started. Since then, many EH technologies have evolved, advanced and even been successfully developed into hardware prototypes for sustaining the operational lifetime of low?power electronic devices like mobile gadgets, smart wireless sensor networks, etc. Energy harvesting is a technology that harvests freely available renewable energy from the ambient environment to recharge or put used energy back into the energy storage devices without the hassle of disrupting or even discontinuing the normal operation of the specific application. With the prior knowledge and experience developed over a decade ago, progress of sustainable EH technologies research is still intact and ongoing. EH technologies are starting to mature and strong synergies are formulating with dedicate application areas. To move forward, now would be a good time to setup a review and brainstorm session to evaluate the past, investigate and think through the present and understand and plan for the future sustainable energy harvesting technologies.
Bridge Maintenance, Safety, Management, Resilience and Sustainability contains the lectures and papers presented at The Sixth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2012), held in Stresa, Lake Maggiore, Italy, 8-12 July, 2012. This volume consists of a book of extended abstracts (800 pp) Extensive collection of revised expert papers on recent advances in bridge maintenance, safety, management and life-cycle performance, representing a major contribution to the knowledge base of all areas of the field.
This book constitutes the refereed post-conference proceedings of 13 workshops held at the 33rd International ISC High Performance 2018 Conference, in Frankfurt, Germany, in June 2018: HPC I/O in the Data Center, HPC-IODC 2018; Workshop on Performance and Scalability of Storage Systems, WOPSSS 2018; 13th Workshop on Virtualization in High-Performance Cloud Computing, VHPC 2018; Third International Workshop on In Situ Visualization, WOIV 2018; 4th International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds at Extreme Scale, ExaComm 2018; International Workshop on OpenPOWER for HPC, IWOPH 2018; IXPUG Workshop: Many-Core Computing on Intel Processors; Works...
Stochastic Resonance: Theory and Applications deals with the theory of noise-added systems and in particular with Stochastic Resonance, a quite novel theory that was introduced in the 1980s to provide better understanding of some natural phenomena (e.g. ice age recurrence). Following the very first works, a number of different applications to both natural and human-produced phenomena were proposed. The book aims to improve the understanding of noise-based techniques and to focus on practical applications of this class of phenomena (an aspect that has been very poorly investigated up to now). Based on this objective, the book is roughly divided into two parts. The first part deals with the es...
Van der Erve reexamines the doctrines that helped society advance but, at the same time, shielded it from a remarkable realm of human interpretation. Rather than challenge these doctrines, van der Erve unveils a meta-view, a liberating perspective of human thinking and acting.
This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.>
This book is dedicated to wearable and autonomous systems, including devices, offers to variety of users, namely, master degree students, researchers and practitioners, An opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field. The book draws the attention about interesting aspects, as for instance, advanced wearable sensors for enabling applications, solutions for arthritic patients in their limited and conditioned movements, wearable gate analysis, energy harvesting, physiological parameter monitoring, communication, pathology detection , etc..