You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The purpose of this lecture book is to present the state of the art in nonlinear blind source separation, in a form appropriate for students, researchers and developers. Source separation deals with the problem of recovering sources that are observed in a mixed condition. When we have little knowledge about the sources and about the mixture process, we speak of blind source separation. Linear blind source separation is a relatively well studied subject, however nonlinear blind source separation is still in a less advanced stage, but has seen several significant developments in the last few years. This publication reviews the main nonlinear separation methods, including the separation of post-nonlinear mixtures, and the MISEP, ensemble learning and kTDSEP methods for generic mixtures. These methods are studied with a significant depth. A historical overview is also presented, mentioning most of the relevant results, on nonlinear blind source separation, that have been presented over the years.
This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets a...
A typical undergraduate electrical engineering curriculum incorporates a signals and systems course. The widely used approach for the laboratory component of such courses involves the utilization of MATLAB to implement signals and systems concepts. This book presents a newly developed laboratory paradigm where MATLAB codes are made to run on smartphones, which most students already possess. This smartphone-based approach enables an anywhere-anytime platform for students to conduct signals and systems experiments. This book covers the laboratory experiments that are normally covered in signals and systems courses and discusses how to run MATLAB codes for these experiments on smartphones, thus enabling a truly mobile laboratory environment for students to learn the implementation aspects of signals and systems concepts. A zipped file of the codes discussed in the book can be acquired via the website http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodes.
tionsalso,apartfromsignalprocessing,withother?eldssuchasstatisticsandarti?cial neuralnetworks. As long as we can ?nd a system that emits signals propagated through a mean, andthosesignalsarereceivedbyasetofsensorsandthereisaninterestinrecovering the originalsources,we have a potential?eld ofapplication forBSS and ICA. Inside thatwiderangeofapplicationswecan?nd,forinstance:noisereductionapplications, biomedicalapplications,audiosystems,telecommunications,andmanyothers. This volume comes out just 20 years after the ?rst contributionsin ICA and BSS 1 appeared . Thereinafter,the numberof research groupsworking in ICA and BSS has been constantly growing, so that nowadays we can estimate that far more than 100 groupsareresearchinginthese?elds. Asproofoftherecognitionamongthescienti?ccommunityofICAandBSSdev- opmentstherehavebeennumerousspecialsessionsandspecialissuesinseveralwell- 1 J.Herault, B.Ans,“Circuits neuronaux à synapses modi?ables: décodage de messages c- posites para apprentissage non supervise”, C.R. de l'Académie des Sciences, vol. 299, no. III-13,pp.525–528,1984.
This book is designed for use as a textbook for a one semester Signals and Systems class. It is sufficiently user friendly to be used for self study as well. It begins with a gentle introduction to the idea of abstraction by looking at numbers—the one highly abstract concept we use all the time. It then introduces some special functions that are useful for analyzing signals and systems. It then spends some time discussing some of the properties of systems; the goal being to introduce the idea of a linear time-invariant system which is the focus of the rest of the book. Fourier series, discrete and continuous time Fourier transforms are introduced as tools for the analysis of signals. The c...
This book is intended to fill the gap between the "ideal precision" digital signal processing (DSP) that is widely taught, and the limited precision implementation skills that are commonly required in fixed-point processors and field programmable gate arrays (FPGAs). These skills are often neglected at the university level, particularly for undergraduates. We have attempted to create a resource both for a DSP elective course and for the practicing engineer with a need to understand fixed-point implementation. Although we assume a background in DSP, Chapter 2 contains a review of basic theory and Chapter 3 reviews random processes to support the noise model of quantization error. Chapter 4 de...
The NATO Advanced Study Institute From Statistics to Neural Networks, Theory and Pattern Recognition Applications took place in Les Arcs, Bourg Saint Maurice, France, from June 21 through July 2, 1993. The meeting brought to gether over 100 participants (including 19 invited lecturers) from 20 countries. The invited lecturers whose contributions appear in this volume are: L. Almeida (INESC, Portugal), G. Carpenter (Boston, USA), V. Cherkassky (Minnesota, USA), F. Fogelman Soulie (LRI, France), W. Freeman (Berkeley, USA), J. Friedman (Stanford, USA), F. Girosi (MIT, USA and IRST, Italy), S. Grossberg (Boston, USA), T. Hastie (AT&T, USA), J. Kittler (Surrey, UK), R. Lippmann (MIT Lincoln Lab, ...
The Handbook of Neural Computation is a practical, hands-on guide to the design and implementation of neural networks used by scientists and engineers to tackle difficult and/or time-consuming problems. The handbook bridges an information pathway between scientists and engineers in different disciplines who apply neural networks to similar probl
A typical undergraduate electrical engineering curriculum incorporates a signals and systems course. The widely used approach for the laboratory component of such courses involves the utilization of MATLAB to implement signals and systems concepts. This book presents a newly developed laboratory paradigm where MATLAB codes are made to run on smartphones which are possessed by nearly all students. As a result, this laboratory paradigm provides an anywhere-anytime hardware platform or processing board for students to learn implementation aspects of signals and systems concepts. The book covers the laboratory experiments that are normally covered in signals and systems courses and discusses how to run MATLAB codes for these experiments as apps on both Android and iOS smartphones, thus enabling a truly mobile laboratory paradigm. A zipped file of the codes discussed in the book can be acquired via the website http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodesThirdEdition
This volume contains the collected papers of the NATO Conference on Neurocomputing, held in Les Arcs in February 1989. For many of us, this conference was reminiscent of another NATO Conference, in 1985, on Disordered Systems [1], which was the first conference on neural nets to be held in France. To some of the participants that conference opened, in a way, the field of neurocomputing (somewhat exotic at that time!) and also allowed for many future fruitful contacts. Since then, the field of neurocomputing has very much evolved and its audience has increased so widely that meetings in the US have often gathered more than 2000 participants. However, the NATO workshops have a distinct atmosphere of free discussions and time for exchange, and so, in 1988, we decided to go for another session. This was an ~casion for me and some of the early birds of the 1985 conference to realize how much, and how little too, the field had matured.