You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances
None
This edited book covers all aspects of grain legumes including negative impact of abiotic and biotic stresses under the changing global climate. It discusses the role of various subject disciplines ranging from plant breeding, genetics, plant physiology, molecular biology, and genomics to high-throughput phenotyping and other emerging technologies for sustaining global grain and fodder legume production to alleviate impending global food crises. The book offers strategies to ensure plant-based dietary protein security across the globe. It covers all major commercial legume crops used as food, feed and fodder. This book is targeted to graduate and postgraduate students, researchers, progressive farmers and policymakers to inform them of the importance of cultivating grain and fodder legumes for future global food and nutritional security and for maintaining sustainable ecosystem.
Originally a special issue of Chemistry & Biodiversity, the first part of this volume focuses on the plant Cannabis sativa, its active ingredients, and the discovery of cannabinoid receptors as well as the therapeutic applications of activating, or blocking, the receptors. Following an overview of the plant, its medicinal uses, and its preparations, further chapters cover biosynthetic pathways, pharmacological properties, cannabis-based medicine, toxicology, cannabis prohibition and clinical situations where blocking the cannabinoid receptors might be beneficial. The second part covers the journey from humans to plants, analyzing anandamide, as well as other endocannabinoids and endocannabinoid congeners, biosynthetic pathways, current knowledge of FAAH-1, FAAH-2, monoglyceride lipase and NAAA, concluding with new areas of research.
In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions and molecules in chemistry, physics, biology, material sciences, etc., it is desirable to publish an Advanced Series that contains review papers readable not only by active researchers in these areas, but also by those who are not experts in the field but who intend to enter the field. The present series attempts to serve this purpose. Each review article is written in a self-contained manner by the experts in the area so that the readers can grasp the knowledge in the area without too much preparation.The topics covered in this volume include “Ultra...
With extensive coverage of synthesis techniques and applications, this text describes chemical biology techniques which have gained significant impetus during the last five years. It focuses on the methods for obtaining modified and native nucleic acids, and their biological applications. Topics covered include: chemical synthesis of modified RNA expansion of the genetic alphabet in nucleic acids by creating new base pairs chemical biology of DNA replication: probing DNA polymerase selectivity mechanisms with modified nucleotides nucleic-acid-templated chemistry chemical biology of peptide nucleic acids (PNA) the interactions of small molecules with DNA and RNA the architectural modules of f...
Electrification is an evolving paradigm shift in the transportation industry toward more efficient, higher performance, safer, smarter, and more reliable vehicles. There is in fact a clear trend to move from internal combustion engines (ICEs) to more integrated electrified powertrains. Providing a detailed overview of this growing area, Advanced Electric Drive Vehicles begins with an introduction to the automotive industry, an explanation of the need for electrification, and a presentation of the fundamentals of conventional vehicles and ICEs. It then proceeds to address the major components of electrified vehicles—i.e., power electronic converters, electric machines, electric motor contro...
This thesis presents an experimental study of the ultrafast molecular dynamics of CO_2^+ that are induced by a strong, near-infrared, femtosecond laser pulse. In particular, typical strong field phenomena such as tunneling ionisation, nonsequential double ionisation and photo-induced dissociation are investigated and controlled by employing an experimental technique called impulsive molecular alignment. Here, a first laser pulse fixes the molecule in space, such that the molecular dynamics can be studied as a function of the molecular geometry with a second laser pulse. The experiments are placed within the context of the study and control of ultrafast molecular dynamics, where sub-femtosecond (10^-15 seconds) resolution in ever larger molecular systems represents the current frontier of research. The thesis presents the required background in strong field and molecular physics, femtosecond laser architecture and experimental techniques in a clear and accessible language that does not require any previous knowledge in these fields.