You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presenting a unique perspective on state-of-the-art physical gels, this interdisciplinary guide provides a complete, critical analysis of the field and highlights recent developments. It shows the interconnections between the key aspects of gels, from molecules and structure through to rheological and functional properties, with each chapter focusing on a different class of gel. There is also a final chapter covering innovative systems and applications, providing the information needed to understand current and future practical applications of gels in the pharmaceutical, agricultural, cosmetic, chemical and food industries. Many research teams are involved in the field of gels, including theoreticians, experimentalists and chemical engineers, but this interdisciplinary book collates and rationalises the many different points of view to provide a clear understanding of these complex systems for researchers and graduate students.
Provides a unique, interdisciplinary perspective on state-of-the-art physical gels, highlighting recent developments and practical applications.
Reservoir characterization is the model that characterizes reservoirs based on their ability to store and produce hydrocarbons. Reservoir modeling is the process of creating a three-dimensional representation of a given reservoir based on its petrophysical, geological, and geophysical properties. Reservoir engineering is the formulation of development and production plans that will result in maximum recovery for a given set of economic, environmental, and technical constraints. It is not a one-time activity but needs continual updating throughout the production life of a reservoir. Reservoir management is often defined as the allocation of resources to optimize hydrocarbon recovery from a re...
The Second Winter School on the "~hysics of Finely Divided Matter" was held at the Centre de Physique des Houches from 25 March to 5 April 1985. This meeting brought together experts from the areas of gels and porous media. People with different backgrounds - chemists, physicists - from university as well as industrial labora tories, had the opportunity to compare their most recent experimental and theoreti cal results. Although the experimental situations and techniques may seem at first sight unrelated, the theoretical interpretations are very similar and may be divided roughly into two categories: percolation and aggregation. These are present for the description of the synthesis of some ...
International celebrity and co-founder of molecular gastronomy Herve This answers such fundamental questions as what causes vegetables to change color when cooked and how to keep a souffle from falling. Sharing the empirical principles chefs have valued for generations, he shows how to adapt recipes to available ingredients and how to modify proposed methods to the utensils at hand. His revelations make difficult recipes easier and allow for even more creativity and experimentation in the kitchen.
A one-stop resource for researchers, developers, and post graduate students in pharmaceutical science. This handbook and ready reference provides detailed, but not overloaded information -- presenting the topic without unnecessarily complex formalism. As such, it gives a systematic and coherent overview of disordered materials for pharmaceutical applications, covering fundamental aspects, as well as preparation and characterization techniques for the target-oriented development of drug delivery systems based on disordered crystals and amorphous solids. Special attention is paid to examine the different facets and levels of disorder in their structural and dynamic aspects as well as the effect of disorder on dissolution and stability. Chapters on processing induced disorder and on patenting issues round off the book. As a result the book helps overcoming the challenges of using these materials in the pharmaceutical industry. For pharmaceutical and medicinal chemists, materials scientists, clinical physicists, and pharmaceutical laboratories looking to make better and more potent pharmaceuticals.
Mayonnaise "takes" when a series of liquids form a semisolid consistency. Eggs, a liquid, become solid as they are heated, whereas, under the same conditions, solids melt. When meat is roasted, its surface browns and it acquires taste and texture. What accounts for these extraordinary transformations? The answer: chemistry and physics. With his trademark eloquence and wit, Hervé This launches a wry investigation into the chemical art of cooking. Unraveling the science behind common culinary technique and practice, Hervé This breaks food down to its molecular components and matches them to cooking's chemical reactions. He translates the complex processes of the oven into everyday knowledge ...
Gels are used in a large variety of commercial and scientific products from drug delivery systems and food science to biomedical sensors. They also are invaluable in MRI physics research where they mimic biological tissue and in radiotherapy quality assurance where they are used to capture the three dimensional radiation dose distribution. This unique book discusses the state-of-the-art of NMR and MRI techniques in studying the physics and chemistry of gel systems, in their application as MRI phantoms and as three dimensional radiation dosimeters. The first part of the book will cover the fundamental physical concepts of gels and the NMR techniques to study gel systems. The second part is de...
The Wiley Polymer Networks Group Review Series Volume 2 Synthetic versus Biological Networks Edited by B. T. Stokke and A. Elgsaeter The Norwegian University of Science and Technology, Trondheim, Norway This, the second volume in the series, presents articles from the 14th Polymer Networks Group conference which took place in Norway in July 1998 The focus of the conference was 'Synthetic versus Biological Networks' with papers highlighting the different ideas emerging from investigations into synthetic polymer networks as opposed to, and in comparison with, polymer networks of biological origins. The papers published in this volume have been divided into six sections: Network Formation Network Characterization Polymer Networks and Precursor Architectures Biopolymer Networks and Gels Biomedical Applications of Polymer Networks Polymer Networks in Restricted Geometries
None