You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Protein Design: Methods and Applications presents the most up-to-date protein design and engineering strategies so that readers can undertake their own projects with a maximum chance of success. The authors present integrated computational approaches that require various degrees of computational complexity, and the major accomplishments that have been achieved in the design and structural characterization of helical peptides and proteins.
This book presents the newest technology in electron microscopy. It comprises two major areas of electron microscopy - transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The volume provides clear, concise instructions on processing biological specimens and includes discussion on the underlying principles of the majority of the processes presented. A notes section enables efficient adaptation and troubleshooting of protocols.
The field of bacterial diagnostics has seen unprecedented advances in recent years. The increased need for accurate detection and identification of bacteria in human, animal, food, and environmental samples has fueled the development of new techniques. The field has seen extensive research aided by the information from bacterial genome sequencing projects. Although traditional methods of bacterial detection and identification remain in use in laboratories around the world, there is now a growing trend toward the use of nucleic ac- based diagnostics and alternative biochemically and immunologically based formats. The ultimate goal of all diagnostic tests is the accurate detection, identification, or typing of microorganisms in samples of interest. Although the resulting information is of obvious use in the areas of patient management, animal health, and quality control, it is also of use in monitoring routes of infection and outlining strategies for infection control. There is, therefore, a need to ensure that the information being provided is of the highest standard and that any new technique is capable of delivering this.
Leading clinicians and scientists in solid organ transplantation review the current status of the field and describe cutting-edge techniques for detecting the immune response to the allografted organ. The authors present the latest techniques for HLA typing, detecting HLA antibodies, and monitoring T-cell response, and examine more specialized methods utilizing proteomics, laser dissection microscopy, and real-time polymerase chain reaction. The area of tolerance induction and reprogramming of the immune system is also covered, along with a discussion of up-to-date methods of organ preservation, of today's optimal immunosuppressive drug regimens, as well as the difficulty of mimicking chronic rejection in experimental models. Introductory chapters provide a theoretical update on current practices in renal, liver, islet, and lung transplantation and on the pathways of antigen presentation and chronic rejection.
The sixth and final volume of the journals of don Diego de Vargas.
A comprehensive collection of optimized methods for dissecting the mechanisms that control epidermal growth factors (EGF) and their regulators in both normal and pathological states. These readily reproducible techniques range from the study of purified EGF receptor to complex signaling and processing networks in intact cells, including a chapter on the clinical and pharmacological considerations of their use in cancer therapy. The protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
This book investigates the various processes that are affected by the age of an organism. Several new tools for the analysis of biological aging have been introduced recently, and this volume provides methods and protocols for these new techniques in addition to its coverage of established procedures. Researchers seeking new technology and techniques will find this volume of tremendous benefit as they move towards new directions.
The previous edition of Transmembrane Signaling Protocols was published in 1998. Since then the human genome has been completely sequenced and new methods have been developed for the use of microarrays and proteomics to analyze global changes in gene expression and protein profiles. These advances have increased our ability to understand transmembrane signaling processes in much greater detail. They have also simultaneously enhanced our ability to determine the role of a large number of newly identified molecules in signaling events. In addition, novel video microscopy methods have been developed to image transmembrane signaling events in live cells in real time. In view of these major advan...
A versatile collection of readily reproducible cell-cell interaction assays for uncovering cellular interactions at the molecular level, both in vitro and in vivo. The protocols cover a diverse set of cell-cell interaction models in both normal and pathological states, are readily adaptable to nearly any cell type and organ system, and include primary data and outcome analysis. In addition, the protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
In this updated second edition, leading researchers apply molecular diagnostics to the many recent advances that have occurred in polymerase chain reaction( PCR)-based technologies. Highlights include real-time PCR, which allows the technique to be performed in a quantitative manner with improved sensitivity, robustness, and resilience to carryover contamination, mass spectrometric analysis of nucleic acids, and circulating cell-free nucleic acids in plasma. The authors apply these innovations to a broad spectrum of applications, including gene expression, methylation, trace molecule, gene dosage, and single cell analysis.