You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book, internationally recognized researchers give a state-of-the-art overview of the electronic device architectures required for the nano-CMOS era and beyond. Challenges relevant to the scaling of CMOS nanoelectronics are addressed through different core CMOS and memory device options in the first part of the book. The second part reviews new device concepts for nanoelectronics beyond CMOS. The book covers the fundamental limits of core CMOS, improving scaling by the introduction of new materials or processes, new architectures using SOI, multigates and multichannels, and quantum computing.
This book is concerned with computing in materio: that is, unconventional computing performed by directly harnessing the physical properties of materials. It offers an overview of the field, covering four main areas of interest: theory, practice, applications and implications. Each chapter synthesizes current understanding by deliberately bringing together researchers across a collection of related research projects. The book is useful for graduate students, researchers in the field, and the general scientific reader who is interested in inherently interdisciplinary research at the intersections of computer science, biology, chemistry, physics, engineering and mathematics.
Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also
"Semiconductor-On-Insulator Materials for NanoElectronics Applications” is devoted to the fast evolving field of modern nanoelectronics, and more particularly to the physics and technology of nanoelectronic devices built on semiconductor-on-insulator (SemOI) systems. The book contains the achievements in this field from leading companies and universities in Europe, USA, Brazil and Russia. It is articulated around four main topics: 1. New semiconductor-on-insulator materials; 2. Physics of modern SemOI devices; 3. Advanced characterization of SemOI devices; 4. Sensors and MEMS on SOI. "Semiconductor-On-Insulator Materials for NanoElectonics Applications” is useful not only to specialists in nano- and microelectronics but also to students and to the wider audience of readers who are interested in new directions in modern electronics and optoelectronics.
This volume contains the proceedings of the 10th edition of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2004), held in Munich, Germany, on September 2-4, 2004. The conference program included 7 invited plenary lectures and 82 contributed papers for oral or poster presentation, which were carefully selected out of a total of 151 abstracts submitted from 14 countries around the world. Like the previous meetings, SISPAD 2004 provided a world-wide forum for the presentation and discussion of recent advances and developments in the theoretical description, physical modeling and numerical simulation and analysis of semiconductor fabrication processes, device operation and system performance. The variety of topics covered by the conference contributions reflects the physical effects and technological problems encountered in consequence of the progressively shrinking device dimensions and the ever-growing complexity in device technology.
Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions. The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quan...
What Is High Temperature Superconductivity High-temperature superconductors are operatively defined as materials that behave as superconductors at temperatures above 77 K, the boiling point of liquid nitrogen, one of the simplest coolants in cryogenics. All materials currently known to conduct at ordinary pressures become superconducting at temperatures far below ambient, and therefore require cooling. The majority of high-temperature superconductors are ceramic materials. On the other hand, Metallic superconductors usually work below −200 °C: they are then called low-temperature superconductors. Metallic superconductors are also ordinary superconductors, since they were discovered and us...