You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.
Modelling credit risk accurately is central to the practice of mathematical finance. The majority of available texts are aimed at an advanced level, and are more suitable for PhD students and researchers. This volume of the Mastering Mathematical Finance series addresses the need for a course intended for master's students, final-year undergraduates, and practitioners. The book focuses on the two mainstream modelling approaches to credit risk, namely structural models and reduced-form models, and on pricing selected credit risk derivatives. Balancing rigorous theory with examples, it takes readers through a natural development of mathematical ideas and financial intuition.
Master the essential mathematical tools required for option pricing within the context of a specific, yet fundamental, pricing model.
A rigorous, unfussy introduction to modern probability theory that focuses squarely on applications in finance.
This book focuses specifically on the key results in stochastic processes that have become essential for finance practitioners to understand. The authors study the Wiener process and Itô integrals in some detail, with a focus on results needed for the Black–Scholes option pricing model. After developing the required martingale properties of this process, the construction of the integral and the Itô formula (proved in detail) become the centrepiece, both for theory and applications, and to provide concrete examples of stochastic differential equations used in finance. Finally, proofs of the existence, uniqueness and the Markov property of solutions of (general) stochastic equations complete the book. Using careful exposition and detailed proofs, this book is a far more accessible introduction to Itô calculus than most texts. Students, practitioners and researchers will benefit from its rigorous, but unfussy, approach to technical issues. Solutions to the exercises are available online.
This book provides aspiring quant developers with the numerical techniques and programming skills needed in quantitative finance. No programming background required.
Students and instructors alike will benefit from this rigorous, unfussy text, which keeps a clear focus on the basic probabilistic concepts required for an understanding of financial market models, including independence and conditioning. Assuming only some calculus and linear algebra, the text develops key results of measure and integration, which are applied to probability spaces and random variables, culminating in central limit theory. Consequently it provides essential prerequisites to graduate-level study of modern finance and, more generally, to the study of stochastic processes. Results are proved carefully and the key concepts are motivated by concrete examples drawn from financial market models. Students can test their understanding through the large number of exercises and worked examples that are integral to the text.
Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.
Measure, Integral and Probability is a gentle introduction that makes measure and integration theory accessible to the average third-year undergraduate student. The ideas are developed at an easy pace in a form that is suitable for self-study, with an emphasis on clear explanations and concrete examples rather than abstract theory. For this second edition, the text has been thoroughly revised and expanded. New features include: · a substantial new chapter, featuring a constructive proof of the Radon-Nikodym theorem, an analysis of the structure of Lebesgue-Stieltjes measures, the Hahn-Jordan decomposition, and a brief introduction to martingales · key aspects of financial modelling, including the Black-Scholes formula, discussed briefly from a measure-theoretical perspective to help the reader understand the underlying mathematical framework. In addition, further exercises and examples are provided to encourage the reader to become directly involved with the material.
This book is an exposition of a new approach to the Navier-Stokes equations, using powerful techniques provided by nonstandard analysis, as developed by the authors. The topics studied include the existence and uniqueness of weak solutions, statistical solutions and the solution of general stochastic equations.The authors provide a self-contained introduction to nonstandard analysis, designed with applied mathematicians in mind and concentrated specifically on techniques applicable to the Navier-Stokes equations. The subsequent exposition shows how these new techniques allow a quick and intuitive entrance into the mathematical theory of hydrodynamics, as well as provide a research tool that has proven useful in solving open problems concerning stochastic equations.