You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.
Modelling credit risk accurately is central to the practice of mathematical finance. The majority of available texts are aimed at an advanced level, and are more suitable for PhD students and researchers. This volume of the Mastering Mathematical Finance series addresses the need for a course intended for master's students, final-year undergraduates, and practitioners. The book focuses on the two mainstream modelling approaches to credit risk, namely structural models and reduced-form models, and on pricing selected credit risk derivatives. Balancing rigorous theory with examples, it takes readers through a natural development of mathematical ideas and financial intuition.
This book provides aspiring quant developers with the numerical techniques and programming skills needed in quantitative finance. No programming background required.
This book focuses specifically on the key results in stochastic processes that have become essential for finance practitioners to understand. The authors study the Wiener process and Itô integrals in some detail, with a focus on results needed for the Black–Scholes option pricing model. After developing the required martingale properties of this process, the construction of the integral and the Itô formula (proved in detail) become the centrepiece, both for theory and applications, and to provide concrete examples of stochastic differential equations used in finance. Finally, proofs of the existence, uniqueness and the Markov property of solutions of (general) stochastic equations complete the book. Using careful exposition and detailed proofs, this book is a far more accessible introduction to Itô calculus than most texts. Students, practitioners and researchers will benefit from its rigorous, but unfussy, approach to technical issues. Solutions to the exercises are available online.
A rigorous, unfussy introduction to modern probability theory that focuses squarely on applications in finance.
An excellent basis for further study. Suitable even for readers with no mathematical background.
Master the essential mathematical tools required for option pricing within the context of a specific, yet fundamental, pricing model.
This book introduces key results essential for financial practitioners by means of concrete examples and a fully rigorous exposition.
Students and instructors alike will benefit from this rigorous, unfussy text, which keeps a clear focus on the basic probabilistic concepts required for an understanding of financial market models, including independence and conditioning. Assuming only some calculus and linear algebra, the text develops key results of measure and integration, which are applied to probability spaces and random variables, culminating in central limit theory. Consequently it provides essential prerequisites to graduate-level study of modern finance and, more generally, to the study of stochastic processes. Results are proved carefully and the key concepts are motivated by concrete examples drawn from financial market models. Students can test their understanding through the large number of exercises and worked examples that are integral to the text.
This master's-level introduction to mainstream credit risk modelling balances rigorous theory with real-world, post-credit crisis examples.