You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Darlison’s excellent work reviews aspects of GABA-A receptor function, as well as the properties of a variety of other important inhibitory proteins, such as GABA-C receptors and G-protein coupled receptors including neuropeptides. Glycine receptors and potassium channels are covered too. The consequences of mutations that disrupt the regulation of excitatory neurotransmission, and efforts to target the GABAergic system for therapeutic benefit, are also discussed.
Major progresses in the study of the cellular and molecular basis of synaptic transmission of nerve cells are highlighted. Each individual contribution gives an overview of the subject, presenting a description of the technical approach and considering future perspectives of the developments in the field. Topics range from historical aspects of the development of biochemical studies on synaptic transmission to the most advanced techniques applicable in morphological and functional studies of the nerve terminal. Studies on synaptic vesicles, the regulation of presynaptic transmitter synthesis, transmitter-release and especially the molecular structure and function of presynaptic ion channels and of transmitter receptors offer a detailed insight into synaptic events.
This handbook provides a thorough account of recent directions in membrane channel research. Each subject is covered in terms of channel biophysics, pharmacology, and molecular biology. The introductory chapter reviews methodologies of molecular biology currently used for studying molecular structure and function of membrane channels and specific domains in channel proteins.
Proceedings of the NATO Advanced Research Workshop on Mechanism of Action of the Nicotinic Acetylcholine Receptors held on the Island of Santorini, Greece, May 19-23, 1986
This comprehensive compilation provides a wealth of information on receptor sequences produced by recombinant DNA techniques used in combination with classical biochemistry. To minimize redundancies in this wealth of information, only a few receptors (some of which are typical for a whole group of similar receptors, others which are presently of special interest) are dealt with in a full-size chapter. Others are represented in the TIPS Receptor Nomenclature Supplement which is included as a special feature in this book, making this volume more useful as a receptor handbook.
In the last two decades, our knowledge on regulatory peptides and their cognate receptors, most of which are members of the seven transmembrane receptor families, has increased enormously. Regulatory peptides are small proteins which, besides their hormonal functions in regulating cellular metabolism in various tissues, may also act as neurotransmitters, and thus they often carry the prefix "neuro." Many of the cognate receptors involved in transducing the peptidergic signal across the cell membrane via a family of G proteins exist in multiple forms, the number of which frequently exceeds that of the corresponding peptide ligands. In this book, various peptide-receptor systems are discussed, e.g. CRF, somatostatin, TRH, opioid peptides, vasopressin, and oxytocin. It also discusses new strategies such as "reverse physiology" to uncover new peptides and orphan receptors.
This workshop was the second of this series held on the island of santorini in the Cycladic Sea. The first one ("Mechanism of Action of the Nicotinic Acetylcholine Receptor", NATO ASI Se ries H, vol. 10) took place in May 1986 and focused on what was at the time the best studied of all neuroreceptors. This second one, held only two years later, demonstrates the im mense progress achieved since then in the field of neurorecep tors and ion channels. Molecular cloning techniques have now made available the primary structures of a whole array of ion channel proteins, and this in turn has shed light on some gen eral principles of the structure-function relationships of these central elements of intercellular communication. The purpose of this workshop was to explore the common ele ments in gene and protein structure of already cloned ion channel proteins, and to assess the status of other cloning projects in progress. It explicitly focused on very recently published and unpublished results. All participants kept to these goals thereby demonstrating the very value of such work shops for the progress of science.
This collection of articles, edited by D. W. Halton, is the specially commissioned supplement to the journal Parasitology, volume 113.
When the six of us gathered to start planning for what was to be the Third Edition of Physiology of Membrane Disorders, it was clear that since 1986, when the Second Edition appeared, the field had experienced the dawning of a new era dominated by a change in focus from phenomenology to underlying mechanisms propelled by the power of molecular biology. In 1985, detailed molecular information was available for only three membrane transporters: the lac permease, bacterial rhodopsin, and the acetylcholine receptor. During the decade that has since elapsed, almost all of the major ion channels and transport proteins have been cloned, sequenced, mutagenized, and expressed in homologous as well as...