You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Provides a more accessible introduction than other books on Markov processes by emphasizing the structure of the subject and avoiding sophisticated measure theory Leads the reader to a rigorous understanding of basic theory
A readable 2006 synthesis of three main areas in the modern theory of stochastic processes.
The modem theory of Markov processes has its origins in the studies of A. A. MARKOV (1906-1907) on sequences of experiments "connected in a chain" and in the attempts to describe mathematically the physical phenomenon known as Brownian motion (L. BACHELlER 1900, A. EIN STEIN 1905). The first correct mathematical construction of a Markov process with continuous trajectories was given by N. WIENER in 1923. (This process is often called the Wiener process.) The general theory of Markov processes was developed in the 1930's and 1940's by A. N. KOL MOGOROV, W. FELLER, W. DOEBLlN, P. LEVY, J. L. DOOB, and others. During the past ten years the theory of Markov processes has entered a new period of ...
From the reviews of the First Edition: "This excellent book is based on several sets of lecture notes written over a decade and has its origin in a one-semester course given by the author at the ETH, Zürich, in the spring of 1970. The author's aim was to present some of the best features of Markov processes and, in particular, of Brownian motion with a minimum of prerequisites and technicalities. The reader who becomes acquainted with the volume cannot but agree with the reviewer that the author was very successful in accomplishing this goal...The volume is very useful for people who wish to learn Markov processes but it seems to the reviewer that it is also of great interest to specialists in this area who could derive much stimulus from it. One can be convinced that it will receive wide circulation." (Mathematical Reviews) This new edition contains 9 new chapters which include new exercises, references, and multiple corrections throughout the original text.
Markov process theory provides a mathematical framework for analyzing the elements of randomness that are involved in most real-world dynamical processes. This introductory text, which requires an understanding of ordinary calculus, develops the concepts and results of random variable theory.
This graduate-level text explores the relationship between Markov processes and potential theory, in addition to aspects of the theory of additive functionals. Topics include Markov processes, excessive functions, multiplicative functionals and subprocesses, and additive functionals and their potentials. A concluding chapter examines dual processes and potential theory. 1968 edition.
The present volume contains the most advanced theories on the martingale approach to central limit theorems. Using the time symmetry properties of the Markov processes, the book develops the techniques that allow us to deal with infinite dimensional models that appear in statistical mechanics and engineering (interacting particle systems, homogenization in random environments, and diffusion in turbulent flows, to mention just a few applications). The first part contains a detailed exposition of the method, and can be used as a text for graduate courses. The second concerns application to exclusion processes, in which the duality methods are fully exploited. The third part is about the homoge...
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
General Theory of Markov Processes
Aims to give to the reader the tools necessary to apply semi-Markov processes in real-life problems. The book is self-contained and, starting from a low level of probability concepts, gradually brings the reader to a deep knowledge of semi-Markov processes. Presents homogeneous and non-homogeneous semi-Markov processes, as well as Markov and semi-Markov rewards processes. The concepts are fundamental for many applications, but they are not as thoroughly presented in other books on the subject as they are here.