You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introductory Science of Alcoholic Beverages provides readers an engaging introduction to the science behind beer, wine, and spirits. It illustrates not only the chemical principles that underlie what alcoholic beverages are, why they are the way they are and what they contain, but also frames them within the context of historical and societal developments. Discussed chapter topics include introductions to beer, wine, and spirits; the principles behind fermentation and distillation; and overviews of how each beverage class is made. The chapters highlight the unique chemistries that lend beer, wine, and spirits their individuality, as well as the key chemicals that impart their characteristic aroma and flavor profiles. This book goes beyond focused descriptions of individual alcoholic beverages by summarizing their common chemical lineage and illuminating the universal scientific principles that underpin them. It will be of interest to students of physics and chemistry, as well as enthusiasts and connoisseurs of beer, wine, and spirits.
Designed for students at the senior undergraduate and first-year graduate level, Introductory Nanoscience takes a quantitative approach to describing the physical and chemical principles behind what makes nanostructures so fascinating. This textbook provides a foundation for understanding how properties of materials change when scaled to nano-size, explaining how we may predict behavior and functionality.
Fractals, Diffusion and Relaxation in Disordered Complex Systems is a special guest-edited, two-part volume of Advances in Chemical Physics that continues to report recent advances with significant, up-to-date chapters by internationally recognized researchers.
In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosity, material scientists have ventured into the realm of nanometer length scale and have explored the ...
Fractals, Diffusion, and Relaxation in Disordered Complex Systems is a special guest-edited, two-part volume of Advances in Chemical Physics that continues to report recent advances with significant, up-to-date chapters by internationally recognized researchers.
Multifunctional Inorganic Nanomaterials for Energy Applications provides deep insight into the role of multifunctional nanomaterials in the field of energy and power generation applications. It mainly focuses on the synthesis, fabrication, design, development, and optimization of novel functional inorganic nanomaterials for energy storage and saving devices. It also covers studies of inorganic electrode materials for supercapacitors, membranes for batteries and fuel cells, and materials for display systems and energy generation. Features: Explores computational and experimental methods of preparing inorganic nanomaterials and their multifunctional applications Includes synthesis and performance analysis of various functional nanomaterials for energy storage and saving applications Reviews current research directions and latest developments in the field of energy materials Discusses importance of computational techniques in designing novel nanomaterials Highlights importance of multifunctional applications of nanomaterials in the energy sector This book is aimed at graduate students and researchers in materials science, electrical engineering, and nanomaterials.
This book will provide readers with a good overview of some of most recent advances in the field of technology for perovskite materials. There will be a good mixture of general chapters in both technology and applications in opto-electronics, Xray detection and emerging transistor structures. The book will have an in-depth review of the research topics from world-leading specialists in the field. The authors build connections between the materials’ physical properties to the main applications such as photovoltaics, LED, FETs and X-ray sensors. They also discuss the similarities and main differences when using perovskites for those devices.
ZnO and its hybrid nanostructures have unique optical, physical and chemical properties. The book covers recent trends in processing techniques and applications. Topics include solar cells, photo-voltaic devices, fuel cells, uv filters, lasers, light-emitting diodes, photo-detectors, spin-tronic devices, magnetic semiconductors, nano-generators, piezotronics, photo-catalytic applications against harmful organic pollutants like dyes, heavy metals, antibiotics, and sensors such as bio sensors, chemical sensors, gas sensors. Keywords: ZnO, Nano ZnO, Point Defects, Magnetic Semiconductors, Hybrid Nanostructures, Cell Applications, Nanoadsorbant for Heavy Metal Removals, Diagnostics, ZnO Nano-Carriers, ZnO Thin Films Fabrication.
Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Even though reports suggest that the silicon share will slowly decrease in the next twenty years, findin...