You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability. They further illustrate how representation theory is related to quantum computing; and much more. Taken together, this volume provides both a solid reference and deep insights on current research activity.
This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class o...
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lecture
This book presents an account of recent results on the theory of representations and the harmonic analysis of free groups. It emphasizes the analogy with the theory of representations of noncompact semisimple Lie groups and restricts the focus to a class of irreducible unitary representations.
These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.
A contemporary exploration of the interplay between geometry, spectral theory and stochastics which is explored for graphs and manifolds.
On the the mathematical aspects of the theory of carrier transport in semiconductor devices. The subjects covered include hydrodynamical models for semiconductors based on the maximum entropy principle of extended thermodynamics, mathematical theory of drift-diffusion equations with applications, and the methods of asymptotic analysis.
The theory of the Fourier algebra lies at the crossroads of several areas of analysis. Its roots are in locally compact groups and group representations, but it requires a considerable amount of functional analysis, mainly Banach algebras. In recent years it has made a major connection to the subject of operator spaces, to the enrichment of both. In this book two leading experts provide a road map to roughly 50 years of research detailing the role that the Fourier and Fourier-Stieltjes algebras have played in not only helping to better understand the nature of locally compact groups, but also in building bridges between abstract harmonic analysis, Banach algebras, and operator algebras. All of the important topics have been included, which makes this book a comprehensive survey of the field as it currently exists. Since the book is, in part, aimed at graduate students, the authors offer complete and readable proofs of all results. The book will be well received by the community in abstract harmonic analysis and will be particularly useful for doctoral and postdoctoral mathematicians conducting research in this important and vibrant area.
The C.I.M.E. session on Dynamical Systems, held in Cetraro (Italy), June 19-26, 2000, focused on the latest developments in several important areas in dynamical systems, with full development and historical context. The lectures of Chow and Mallet-Paret focus on the area of lattice differential systems, the lectures of Conto and Galleotti treat the classical problem of classification of orbits for two-dimensional autonomous systems with polynomial right sides, the lectures of Nussbaum focus on applications of fixed point theorems to the problem of limiting profiles for the solutions of singular perturbations of delay differential equations, and the lectures of Johnson and Mantellini deal with the existence of periodic and quasi-periodic orbits to non-autonomous systems. The volume will be of interest to researchers and graduate students working in these areas.
This volume is a tribute to one of the founders of modern theory of dynamical systems, the late Dmitry Victorovich Anosov. It contains both original papers and surveys, written by some distinguished experts in dynamics, which are related to important themes of Anosov's work, as well as broadly interpreted further crucial developments in the theory of dynamical systems that followed Anosov's original work. Also included is an article by A. Katok that presents Anosov's scientific biography and a picture of the early development of hyperbolicity theory in its various incarnations, complete and partial, uniform and nonuniform.