Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Combinatorial Aspects of Commutative Algebra and Algebraic Geometry
  • Language: en
  • Pages: 186

Combinatorial Aspects of Commutative Algebra and Algebraic Geometry

The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry", held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Söderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour.

On the Shape of a Pure $O$-Sequence
  • Language: en
  • Pages: 93

On the Shape of a Pure $O$-Sequence

A monomial order ideal is a finite collection X of (monic) monomials such that, whenever M∈X and N divides M, then N∈X. Hence X is a poset, where the partial order is given by divisibility. If all, say t t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h_=(h0=1,h1,...,he), counting the monomials of X in each degree. Equivalently, pure O-sequences can be characterized as the f-vectors of pure multicomplexes, or, in the language of commutative algebra, as the h h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of the early works of Stanley's in this area, and have since played a significant role in at least three different disciplines: the study of simplicial complexes and their f f-vectors, the theory of level algebras, and the theory of matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences.

The Lin-Ni's Problem for Mean Convex Domains
  • Language: en
  • Pages: 118

The Lin-Ni's Problem for Mean Convex Domains

The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration can occur only on boundary points with nonpositive mean curvature when $n=3$ or $n\geq 7$. As a direct consequence, they prove the validity of the Lin-Ni's conjecture in dimension $n=3$ and $n\geq 7$ for mean convex domains and with bounded energy. Recent examples by Wang-Wei-Yan show that the bound on the energy is a necessary condition.

$n$-Harmonic Mappings between Annuli
  • Language: en
  • Pages: 120

$n$-Harmonic Mappings between Annuli

Iwaniec and Onninen (both mathematics, Syracuse U., US) address concrete questions regarding energy minimal deformations of annuli in Rn. One novelty of their approach is that they allow the mappings to slip freely along the boundaries of the domains, where it is most difficult to establish the existence, uniqueness, and invertibility properties of the extremal mappings. At the core of the matter, they say, is the underlying concept of free Lagrangians. After an introduction, they cover in turn principal radial n-harmonics, and the n-harmonic energy. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).

A Study of Singularities on Rational Curves Via Syzygies
  • Language: en
  • Pages: 132

A Study of Singularities on Rational Curves Via Syzygies

Consider a rational projective curve $\mathcal{C}$ of degree $d$ over an algebraically closed field $\pmb k$. There are $n$ homogeneous forms $g_{1},\dots, g_{n}$ of degree $d$ in $B=\pmb k[x, y]$ which parameterize $\mathcal{C}$ in a birational, base point free, manner. The authors study the singularities of $\mathcal{C}$ by studying a Hilbert-Burch matrix $\varphi$ for the row vector $[g_{1},\dots, g_{n}]$. In the ``General Lemma'' the authors use the generalized row ideals of $\varphi$ to identify the singular points on $\mathcal{C}$, their multiplicities, the number of branches at each singular point, and the multiplicity of each branch. Let $p$ be a singular point on the parameterized p...

The Poset of $k$-Shapes and Branching Rules for $k$-Schur Functions
  • Language: en
  • Pages: 113

The Poset of $k$-Shapes and Branching Rules for $k$-Schur Functions

The authors give a combinatorial expansion of a Schubert homology class in the affine Grassmannian $\mathrm{Gr}_{\mathrm{SL}_k}$ into Schubert homology classes in $\mathrm{Gr}_{\mathrm{SL}_{k+1}}$. This is achieved by studying the combinatorics of a new class of partitions called $k$-shapes, which interpolates between $k$-cores and $k+1$-cores. The authors define a symmetric function for each $k$-shape, and show that they expand positively in terms of dual $k$-Schur functions. They obtain an explicit combinatorial description of the expansion of an ungraded $k$-Schur function into $k+1$-Schur functions. As a corollary, they give a formula for the Schur expansion of an ungraded $k$-Schur function.

Connes-Chern Character for Manifolds with Boundary and Eta Cochains
  • Language: en
  • Pages: 106

Connes-Chern Character for Manifolds with Boundary and Eta Cochains

"November 2012, volume 220, number (end of volume)."

Hopf Algebras and Congruence Subgroups
  • Language: en
  • Pages: 146

Hopf Algebras and Congruence Subgroups

We prove that the kernel of the action of the modular group on the center of a semisimple factorizable Hopf algebra is a congruence subgroup whenever this action is linear. If the action is only projective, we show that the projective kernel is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations
  • Language: en
  • Pages: 144

Vector Bundles on Degenerations of Elliptic Curves and Yang-Baxter Equations

"November 2012, volume 220, number 1035 (third of 4 numbers)."