Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Matt DeVos and Deborah A. Kent
  • Language: en
  • Pages: 361

Matt DeVos and Deborah A. Kent

This book offers a gentle introduction to the mathematics of both sides of game theory: combinatorial and classical. The combination allows for a dynamic and rich tour of the subject united by a common theme of strategic reasoning. Designed as a textbook for an undergraduate mathematics class and with ample material and limited dependencies between the chapters, the book is adaptable to a variety of situations and a range of audiences. Instructors, students, and independent readers alike will appreciate the flexibility in content choices as well as the generous sets of exercises at various levels.

A First Journey through Logic
  • Language: en
  • Pages: 201

A First Journey through Logic

The aim of this book is to present mathematical logic to students who are interested in what this field is but have no intention of specializing in it. The point of view is to treat logic on an equal footing to any other topic in the mathematical curriculum. The book starts with a presentation of naive set theory, the theory of sets that mathematicians use on a daily basis. Each subsequent chapter presents one of the main areas of mathematical logic: first order logic and formal proofs, model theory, recursion theory, Gödel's incompleteness theorem, and, finally, the axiomatic set theory. Each chapter includes several interesting highlights—outside of logic when possible—either in the main text, or as exercises or appendices. Exercises are an essential component of the book, and a good number of them are designed to provide an opening to additional topics of interest.

Combinatorial and Additive Number Theory
  • Language: en
  • Pages: 309

Combinatorial and Additive Number Theory

  • Type: Book
  • -
  • Published: 2014-10-18
  • -
  • Publisher: Springer

This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems and future challenges in number theory.

A Conversational Introduction to Algebraic Number Theory
  • Language: en
  • Pages: 329

A Conversational Introduction to Algebraic Number Theory

Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to mo...

2021-2022 MATRIX Annals
  • Language: en
  • Pages: 905

2021-2022 MATRIX Annals

MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-2 weeks in duration. This book is a scientific record of the 24 programs held at MATRIX in 2021-2022, including tandem workshops with Mathematisches Forschungsinstitut Oberwolfach (MFO), with Research Institute for Mathematical Sciences Kyoto University (RIMS), and with Sydney Mathematical Research Institute (SMRI).

Galois Theory for Beginners: A Historical Perspective, Second Edition
  • Language: en
  • Pages: 217

Galois Theory for Beginners: A Historical Perspective, Second Edition

Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. In this book, Bewersdorff follows the historical development of the theory, emphasizing concrete examples along the way. As a result, many mathematical abstractions are now seen as the natural consequence of particular investigations. Few prerequisites are needed beyond general college mathematics, since the necessary ideas and properties of groups and fields are provided as needed. Results in Galois theory are formulated first in a concrete, elementary way, then in the modern form. Each chapter begins with a simple question that gives the reader an ...

An Introduction to the Circle Method
  • Language: en
  • Pages: 280

An Introduction to the Circle Method

The circle method, pioneered by Ramanujan and Hardy in the early 20th century, has over the past 100 years become part of the standard tool chest of analytic number theory. Its scope of applications is ever-expanding, and the subject continues to see important breakthroughs. This book provides an introduction to the circle method that is accessible to undergraduate students with no background in number theory. The authors' goal is to show the students the elegance of the circle method and at the same time give a complete solution of the famous Waring problem as an illustration of the method. The first half of this book is a curated introduction to elementary number theory with an emphasis on topics needed for the second half. The second half showcases the two most “classic” applications of the circle method, to Waring's problem (following Hardy–Littlewood–Hua) and to Goldbach's conjectures (following Vinogradov, with improvements by Vaughan). This text is suitable for a one-semester undergraduate course or for independent study and will be a great entry point into this fascinating area of research.

An Introduction to Symmetric Functions and Their Combinatorics
  • Language: en
  • Pages: 359

An Introduction to Symmetric Functions and Their Combinatorics

This book is a reader-friendly introduction to the theory of symmetric functions, and it includes fundamental topics such as the monomial, elementary, homogeneous, and Schur function bases; the skew Schur functions; the Jacobi–Trudi identities; the involution ω ω; the Hall inner product; Cauchy's formula; the RSK correspondence and how to implement it with both insertion and growth diagrams; the Pieri rules; the Murnaghan–Nakayama rule; Knuth equivalence; jeu de taquin; and the Littlewood–Richardson rule. The book also includes glimpses of recent developments and active areas of research, including Grothendieck polynomials, dual stable Grothendieck polynomials, Stanley's chromatic sy...

An Introduction to Ramsey Theory
  • Language: en
  • Pages: 224

An Introduction to Ramsey Theory

This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progre...

Glimpses of Soliton Theory
  • Language: en
  • Pages: 366

Glimpses of Soliton Theory

This book challenges and intrigues from beginning to end. It would be a treat to use for a capstone course or senior seminar. —William J. Satzer, MAA Reviews on Glimpses of Soliton Theory (First Edition) Solitons are nonlinear waves which behave like interacting particles. When first proposed in the 19th century, leading mathematical physicists denied that such a thing could exist. Now they are regularly observed in nature, shedding light on phenomena like rogue waves and DNA transcription. Solitons of light are even used by engineers for data transmission and optical switches. Furthermore, unlike most nonlinear partial differential equations, soliton equations have the remarkable property...