You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.
A comprehensive guide to the vast literature and range of results around Lusztig's character theory of finite groups of Lie type.
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. The text contains numerous examples and proofs along with exercises and hints.
Finite Coxeter groups and related structures arise naturally in several branches of mathematics such as the theory of Lie algebras and algebraic groups. The corresponding Iwahori-Hecke algebras are then obtained by a certain deformation process which have applications in the representation theory of groups of Lie type and the theory of knots and links. This book develops the theory of conjugacy classes and irreducible character, both for finite Coxeter groups and the associated Iwahori-Hecke algebras. Topics covered range from classical results to more recent developments and are clear and concise. This is the first book to develop these subjects both from a theoretical and an algorithmic point of view in a systematic way, covering all types of finite Coxeter groups.
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
This volume provides a very accessible introduction to the representation theory of reductive algebraic groups.
This book is an outgrowth of a Research Symposium on the Modular Representation Theory of Finite Groups, held at the University of Virginia in May 1998. The main themes of this symposium were representations of groups of Lie type in nondefining (or cross) characteristic, and recent developments in block theory. Series of lectures were given by M. Geck, A. Kleshchev and R. Rouquier, and their brief was to present material at the leading edge of research but accessible to graduate students working in the field. The first three articles are substantial expansions of their lectures, and each provides a complete account of a significant area of the subject together with an extensive bibliography....
The Fourier transforms of invariant functions on finite reductive Lie algebras are due to T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztig’s character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.
This textbook provides an introduction to modern analysis aimed at advanced undergraduate and graduate-level students of mathematics. Professional academics will also find this to be a useful reference work. It covers measure theory, basic functional analysis, single operator theory, spectraltheory of bounded and unbounded operators, semigroups of operators, and Banach algebras. Further, this new edition of the textbook also delves deeper into C*-algebras and their standard constructions, von Neumann algebras, probability and mathematical statistics, and partial differential equations.Most chapters contain relatively advanced topics alongside simpler ones, starting from the very basics of modern analysis and slowly advancing to more involved topics. The text is supplemented by many exercises, to allow readers to test their understanding and practical analysis skills.
This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.