You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The main topics of this book include advanced control, cognitive data processing, high performance computing, functional safety, and comprehensive validation. These topics are seen as technological bricks to drive forward automated driving. The current state of the art of automated vehicle research, development and innovation is given. The book also addresses industry-driven roadmaps for major new technology advances as well as collaborative European initiatives supporting the evolvement of automated driving. Various examples highlight the state of development of automated driving as well as the way forward. The book will be of interest to academics and researchers within engineering, graduate students, automotive engineers at OEMs and suppliers, ICT and software engineers, managers, and other decision-makers.
Offering first-hand insights by top scientists and industry experts at the forefront of R&D into nanoelectronics, this book neatly links the underlying technological principles with present and future applications. A brief introduction is followed by an overview of present and emerging logic devices, memories and power technologies. Specific chapters are dedicated to the enabling factors, such as new materials, characterization techniques, smart manufacturing and advanced circuit design. The second part of the book provides detailed coverage of the current state and showcases real future applications in a wide range of fields: safety, transport, medicine, environment, manufacturing, and social life, including an analysis of emerging trends in the internet of things and cyber-physical systems. A survey of main economic factors and trends concludes the book. Highlighting the importance of nanoelectronics in the core fields of communication and information technology, this is essential reading for materials scientists, electronics and electrical engineers, as well as those working in the semiconductor and sensor industries.
The book summarizes the main results of the the project ENABLE-S3 covering the following aspects: validation and verification technology bricks (collection and selection of test scenarios, test executions envionments incl. respective models, assessment of test results), evaluation of technology bricks in selected use cases and standardization and related initiatives. ENABLE-S3 is an industry-driven EU-project and aspires to substitute todays' cost-intensive verification and validation efforts by more advanced and efficient methods. In addition, the book includes articles about complementary international activities in order to highlight the global importance of the topic and to cover the wide range of aspects that needs to be covered at a global scale.
The EU and the US are the preeminent examples of multi-level polities and both have highly developed competition policies. Despite these similarities however, recent developments suggest that they are moving in different directions in the area of antitrust federalism. This book examines multi-level governance in competition policy from a comparative perspective. The book analyses how competition laws and authorities of different levels - the federal and the state levels in the US and the national and the supranational levels in the EU - interact with each other. Inspired by the increasingly divergent policy developments taking place on both sides of the Atlantic, the author asks whether the ...
Connectivity has arrived in the vehicle - whether it is in-car internet or car-to-car communication. For the chassis too, the connected car is increasingly becoming a driver of innovation. Predictive and intelligent chassis systems and automated driving are just some of the topics being addressed. In addition to enhancing driving comfort and safety, interconnecting the powertrain with the chassis can also provide new functions, not only in cars but also in commercial vehicles. What is more, modularization, electrification of the powertrain, intelligent development methods and efforts to reduce fuel consumption are also driving innovations in chassis systems.
The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security,and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future.