You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computer technology is pervasive in the modern world, its role ever more important as it becomes embedded in a myriad of physical systems and disciplinary ways of thinking. The late Michael Sean Mahoney was a pioneer scholar of the history of computing, one of the first established historians of science to take seriously the challenges and opportunities posed by information technology to our understanding of the twentieth century. MahoneyÕs work ranged widely, from logic and the theory of computation to the development of software and applications as craft-work. But it was always informed by a unique perspective derived from his distinguished work on the history of medieval mathematics and ...
Hailed as one of the greatest mathematical results of the twentieth century, the recent proof of Fermat's Last Theorem by Andrew Wiles brought to public attention the enigmatic problem-solver Pierre de Fermat, who centuries ago stated his famous conjecture in a margin of a book, writing that he did not have enough room to show his "truly marvelous demonstration." Along with formulating this proposition--xn+yn=zn has no rational solution for n > 2--Fermat, an inventor of analytic geometry, also laid the foundations of differential and integral calculus, established, together with Pascal, the conceptual guidelines of the theory of probability, and created modern number theory. In one of the first full-length investigations of Fermat's life and work, Michael Sean Mahoney provides rare insight into the mathematical genius of a hobbyist who never sought to publish his work, yet who ranked with his contemporaries Pascal and Descartes in shaping the course of modern mathematics.
* A descriptive and analytical guide to the development of Western science from AD 1500, and to the diversity and course of that development first in Europe and later across the world * Presented in clear, non-technical language * Extensive indexes of Subjects and Names `Indeed a companion volume whose 67 essays give pleasure and instruction ... an ambitious and successful work.' - Times Literary Supplement `This work is an essential resource for libraries everywhere. For specialist science libraries willing to keep just one encyclopaedic guide to history, for undergraduate libraries seeking to provide easily accessible information, for the devisers of university curricula, for the modern so...
This history of computing focuses not on chronology (what came first and who deserves credit for it) but on the actual architectures of the first machines that made electronic computing a practical reality. The book covers computers built in the United States, Germany, England, and Japan. It makes clear that similar concepts were often pursued simultaneously and that the early researchers explored many architectures beyond the von Neumann architecture that eventually became canonical. The contributors include not only historians but also engineers and computer pioneers. An introductory chapter describes the elements of computer architecture and explains why "being first" is even less interes...
Silicon Valley gets all the credit for digital creativity, but this account of the pre-PC world, when computing meant more than using mature consumer technology, challenges that triumphalism. The invention of the personal computer liberated users from corporate mainframes and brought computing into homes. But throughout the 1960s and 1970s a diverse group of teachers and students working together on academic computing systems conducted many of the activities we now recognize as personal and social computing. Their networks were centered in New Hampshire, Minnesota, and Illinois, but they connected far-flung users. Joy Rankin draws on detailed records to explore how users exchanged messages, ...
A detailed history explaining how and why, in the late nineteenth century and early twentieth, Africans from the British colony of Natal transformed their ethnic self-identification, constructing and claiming a new Zulu identity.
This volume is written as a reaction to the worldwide decreasing interest in the natural sciences. It addresses many intriguing questions. How is the changing image of the distinct sciences experienced by the general public, by the scientists themselves, or in disciplines in which natural sciences are applied? How can it be connected to the phenomenon of the low number of women in science? It is of interest to researchers, teachers, and students of natural sciences, the history of science, and philosophy.
In 1690, Christiaan Huygens (1629-1695) published Traité de la Lumière, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of natural knowledge. This book discusses the development of Huygens' wave theory, reconstructing the winding road that eventually led to Traité de la Lumière. For the first time, the full range of manuscript sources is taken into account. In addition, the development of Huygens' thinking on the nature of light is put in the context of his optics as a whole, which was dominated by his lifelong pursuit of theoretical ...
Autonomous Nature investigates the history of nature as an active, often unruly force in tension with nature as a rational, logical order from ancient times to the Scientific Revolution of the seventeenth century. Along with subsequent advances in mechanics, hydrodynamics, thermodynamics, and electromagnetism, nature came to be perceived as an orderly, rational, physical world that could be engineered, controlled, and managed. Autonomous Nature focuses on the history of unpredictability, why it was a problem for the ancient world through the Scientific Revolution, and why it is a problem for today. The work is set in the context of vignettes about unpredictable events such as the eruption of Mt. Vesuvius, the Bubonic Plague, the Lisbon Earthquake, and efforts to understand and predict the weather and natural disasters. This book is an ideal text for courses on the environment, environmental history, history of science, or the philosophy of science.