You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Written for an interdisciplinary readership, this book is a practical guide to the fascinating world of solitons. The author approaches the subject from the standpoint of applications in optics, hydrodynamics, and electrical and chemical engineering. This third edition has been thoroughly revised and updated.
In the many physical phenomena ruled by partial differential equations, two extreme fields are currently overcrowded due to recent considerable developments: 1) the field of completely integrable equations, whose recent advances are the inverse spectral transform, the recursion operator, underlying Hamiltonian structures, Lax pairs, etc 2) the field of dynamical systems, often built as models of observed physical phenomena: turbulence, intermittency, Poincare sections, transition to chaos, etc. In between there is a very large region where systems are neither integrable nor nonintegrable, but partially integrable, and people working in the latter domain often know methods from either 1) or 2...
This book addresses the issues of nonlinearity and disorder. It covers mathematical and numerical techniques as well as applications of nonlinearity and disorder. The analysis of continuous and discrete systems is also shown.
In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.
Nonlinear science is by now a well established field of research at the interface of many traditional disciplines and draws on the theoretical concepts developed in physics and mathematics. The present volume gathers the contributions of leading scientists to give the state of the art in many areas strongly influenced by nonlinear research, such as superconduction, optics, lattice dynamics, biology and biomolecular dynamics. While this volume is primarily intended for researchers working in the field care, has been taken that it will also be of benefit to graduate students or nonexpert scientist wishing to familiarize themselves with the current status of research.
This is the first of two Euroconferences aimed at addressing the issues of Nonlinearity and Disorder. The 1995 Euroconference was devoted to the mathematical, numerical and experimental studies related to the Klein-Gordon and Schrödinger systems. The Euroconference was organized around main lectures in each area to introduce the main concepts and stimulate discussions. The mathematical studies covered the functional anlaysis and stochastic techniques applied to the general Klein-Gordon and Schrödinger wave equations. Also a panoramic view of the numerical schemes was presented to simulate the above equations, as well as an overview of the applications of such systems in the areas of condensed matter, optical physics, new materials and biophysics. Special attention was devoted to the discrete Schrödinger and Klein-Gordon systems and their applications.