You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be ph...
This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory...
This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "invisible obstacles." In Chapter 5, it provides a solution to the Navier‒Stokes problem in ℝ³. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier‒Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies.
A brief portrait of the life and work of Professor Enrique Vidal Abascal / L.A. Cordero -- pt. A. Foliation theory. Characteristic classes for Riemannian foliations / S. Hurder. Non unique-ergodicity of harmonic measures: Smoothing Samuel Petite's examples / B, Deroin. On the uniform simplicity of diffeomorphism groups / T. Tsuboi. On Bennequin's isotopy lemma and Thurston's inequality / Y. Mitsumatsu. On the Julia sets of complex codimension-one transversally holomorphic foliations / T. Asuke. Singular Riemannian foliations on spaces without conjugate points / A. Lytchak. Variational formulae for the total mean curvatures of a codimension-one distribution / V. Rovenski and P. Walczak. On a ...
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kähler--Weyl geometry from this viewpoint. This book is intended to be accessible...
Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. Th...
Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book III is aimed at the first-year graduate level but is certainly accessible to advanced undergraduates. It deals with invariance theory and discusses invariants both of Weyl and not of Weyl type; the Chern‒Gauss‒Bonnet formula is treated from this point of view. Homothety homogeneity, local homogeneity, stability theorems, and Walker geometry are discussed. Ricci solitons are presented in the contexts of Riemannian, Lorentzian, and affine geometry.
Atherosclerosis is a pathological condition of the arteries in which plaque buildup and stiffening (hardening) can lead to stroke, myocardial infarction (heart attacks), and even death. Cholesterol in the blood is a key marker for atherosclerosis, with two forms: (1) LDL - low density lipoproteins and (2) HDL - high density lipoproteins. Low LDL and high HDL concentrations are generally considered essential for limited atherosclerosis and good health. This book pertains to a mathematical model for the spatiotemporal distribution of LDL and HDL in the arterial endothelial inner layer (EIL, intima). The model consists of a system of six partial differential equations (PDEs) with the depend...
This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the applications of probability and statistics in everyday life. The purpose is to give a self-contained introduction to classical discrete distributions in statistics. Instead of compiling the important formulas (which are available in many other textbooks), we focus on important applications of each distribution in various applied fields like bioinformatics, genomics, ecology, electronics, epidemiology, management, reliability, etc., making this book an indispensable resource for researchers and practitioners in several scientific fields. Examples are dra...