Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Geometric Realizations of Curvature
  • Language: en
  • Pages: 263

Geometric Realizations of Curvature

A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be ph...

The Integral
  • Language: en
  • Pages: 93

The Integral

This book treats all of the most commonly used theories of the integral. After motivating the idea of integral, we devote a full chapter to the Riemann integral and the next to the Lebesgue integral. Another chapter compares and contrasts the two theories. The concluding chapter offers brief introductions to the Henstock integral, the Daniell integral, the Stieltjes integral, and other commonly used integrals. The purpose of this book is to provide a quick but accurate (and detailed) introduction to all aspects of modern integration theory. It should be accessible to any student who has had calculus and some exposure to upper division mathematics. Table of Contents: Introduction / The Riemann Integral / The Lebesgue Integral / Comparison of the Riemann and Lebesgue Integrals / Other Theories of the Integral

Analytical Techniques for Solving Nonlinear Partial Differential Equations
  • Language: en
  • Pages: 151

Analytical Techniques for Solving Nonlinear Partial Differential Equations

This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for a second course in PDEs (typically found in both science and engineering programs) and has been used at the University of Central Arkansas for more than ten years.

The Fundamentals of Analysis for Talented Freshmen
  • Language: en
  • Pages: 84

The Fundamentals of Analysis for Talented Freshmen

This book assumes the students know some of the basic facts about Calculus. We are very rigorous and expose them to the proofs and the ideas which produce them. In three chapters, this book covers these number systems and the material usually found in a junior-senior advanced Calculus course. It is designed to be a one-semester course for "talented" freshmen. Moreover, it presents a way of thinking about mathematics that will make it much easier to learn more of this subject and be a good preparation for more of the undergraduate curriculum.

Inverse Obstacle Scattering with Non-Over-Determined Scattering Data
  • Language: en
  • Pages: 53

Inverse Obstacle Scattering with Non-Over-Determined Scattering Data

The inverse obstacle scattering problem consists of finding the unknown surface of a body (obstacle) from the scattering (;;), where (;;) is the scattering amplitude, ; 2 is the direction of the scattered, incident wave, respectively, 2 is the unit sphere in the R3 and k > 0 is the modulus of the wave vector. The scattering data is called non-over-determined if its dimensionality is the same as the one of the unknown object. By the dimensionality one understands the minimal number of variables of a function describing the data or an object. In an inverse obstacle scattering problem this number is 2, and an example of non-over-determined data is () := (;0;0). By sub-index 0 a fixed value of a...

Aspects of Differential Geometry IV
  • Language: en
  • Pages: 149

Aspects of Differential Geometry IV

Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. Th...

An Introduction to Partial Differential Equations
  • Language: en
  • Pages: 155

An Introduction to Partial Differential Equations

This book is an introduction to methods for solving partial differential equations (PDEs). After the introduction of the main four PDEs that could be considered the cornerstone of Applied Mathematics, the reader is introduced to a variety of PDEs that come from a variety of fields in the Natural Sciences and Engineering and is a springboard into this wonderful subject. The chapters include the following topics: First-order PDEs, Second-order PDEs, Fourier Series, Separation of Variables, and the Fourier Transform.The reader is guided through these chapters where techniques for solving first- and second-order PDEs are introduced. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for any introductory course in PDEs typically found in both science and engineering programs and has been used at the University of Central Arkansas for over ten years.

Fast Start Advanced Calculus
  • Language: en
  • Pages: 179

Fast Start Advanced Calculus

This book continues the material in two early Fast Start calculus volumes to include multivariate calculus, sequences and series, and a variety of additional applications. These include partial derivatives and the optimization techniques that arise from them, including Lagrange multipliers. Volumes of rotation, arc length, and surface area are included in the additional applications of integration. Using multiple integrals, including computing volume and center of mass, is covered. The book concludes with an initial treatment of sequences, series, power series, and Taylor's series, including techniques of function approximation.

Introduction to Statistics Using R
  • Language: en
  • Pages: 215

Introduction to Statistics Using R

Introduction to Statistics Using R is organized into 13 major chapters. Each chapter is broken down into many digestible subsections in order to explore the objectives of the book. There are many real-life practical examples in this book and each of the examples is written in R codes to acquaint the readers with some statistical methods while simultaneously learning R scripts.

Time-Fractional Order Biological Systems with Uncertain Parameters
  • Language: en
  • Pages: 144

Time-Fractional Order Biological Systems with Uncertain Parameters

The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It is a generalization of ordinary differentiation and integration to arbitrary (non-integer) order. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, biological systems, motion of a plate in a Newtonian fluid, λμ controller for the control of dynamical systems, and so on. It is challenging to obtain the solution (both analytical and numerical) of related nonlinear partial differential equations of fractional or...