You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades. The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations. In the first part, the state-of-the-art of systems of matrix equations is given and generalized invers...
This book is a self-contained advanced monograph on inequalities involving the numerical radius of bounded linear operators acting on complex Hilbert spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing. This monograph is intended for use by both researchers and graduate students of mathematics, physics, and engineering who have a basic background in functional analysis and operator theory. The book provides several challenging problems and detailed arguments for the majority of the results. Each chapter ends with some notes about historical views or further extensions of the topics. It contains a bibliography of about 180 items, so it can be used as a reference book including many classical and modern numerical radius inequalities.
Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality...
The Fifth International Conference on Topological Algebras and Applications was held in Athens, Greece, from June 27th to July 1st of 2005. The main topic of the Conference was general theory of topological algebras and its various applications, with emphasis on the ``non-normed'' case. in addition to the study of the internal structure of non-normed, and even non-locally convex topological algebras, there are applications to other branches of mathematics, such as differential geometry of smooth manifolds, and mathematical physics, such as quantum relativity and quantum cosmology. Operator theory of unbounded operators and related non-normed topological algebras are intensively studied here. Other topics presented in this volume are topological homological algebra, topological algebraic geometry, sheaf theory and $K$-theory.
The volume will consist of about 40 articles written by some very influential mathematicians of our time and will expose the latest achievements in the broad area of nonlinear analysis and its various interdisciplinary applications.
This book provides a comprehensive presentation of recent approaches to and results about properties of various classes of functional spaces, such as Banach spaces, uniformly convex spaces, function spaces, and Banach algebras. Each of the 12 articles in this book gives a broad overview of current subjects and presents open problems. Each article includes an extensive bibliography. This book is dedicated to Professor Per. H. Enflo, who made significant contributions to functional analysis and operator theory.
None
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.