You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The uses of nanotechnologies continue to rise exponentially. Due to their multifaceted nature, nanomaterials have a vast amount of potential uses in various scientific professions. Professionals in sectors including agriculture, nutrition, and healthcare are discovering the numerous benefits that nanomaterials carry when applied to traditional practices. In order to understand the dynamic properties of nanomaterials and how to utilize them in specific fields, significant research is required. Applications of Nanomaterials in Agriculture, Food Science, and Medicine is an essential reference source that discusses the emerging development of nanotechnology in various sectors of the scientific community as well as the current benefits and future uses. Industries that the book covers include energy storage and renewable energy, environmental science and wastewater treatment, food and agriculture, and medicine and bioinformatics. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students seeking coverage on the strategic role of nanomaterials in these imperative fields.
Nanomaterials can be synthesized by physical, chemical, and biological methods; however, the latter technique is preferred as it is eco-friendly, non-toxic, and cost-effective. The green synthesized nanomaterials have been found to be more efficient with potential applications in diverse fields. It is crucial to explore green synthesized nanomaterials and the applications that can be made in order to support water remediation, pharmaceuticals, food processing, construction, and more. The Handbook of Research on Green Synthesis and Applications of Nanomaterials provides a multidisciplinary approach to the awareness of using non-toxic, eco-friendly, and economical green techniques for the synthesis of various nanomaterials, as well as their applications across a variety of fields. Covering topics such as antimicrobial applications, environmental remediation, and green synthesis, this book acts as a thorough reference for engineers, nanotechnology professionals, academicians, students, scientists, and researchers pursuing research in the nanotechnology field.
Nanotechnology has grown in its use and adoption across sectors. In particular, the medical field has identified the vast opportunities nanotechnology presents, especially for earlier disease detection and diagnosis versus traditional methods. Integrating Biologically-Inspired Nanotechnology into Medical Practice presents the latest research on nanobiotechnology and its application as a real-world healthcare solution. Emphasizing applications of micro-scale technologies in the areas of oncology, food science, and pharmacology, this reference publication is an essential resource for medical professionals, researchers, chemists, and graduate-level students in the medical and pharmaceutical sciences.
As nanoscale research continues to advance, scientists and engineers are developing new applications for many different disciplines, including environmental remediation and energy optimization. Nanotechnology Applications for Improvements in Energy Efficiency and Environmental Management combines up-to-date research findings and relevant theoretical frameworks on the subject of micro-scale technologies being used to promote environmental sustainability. Highlighting the impacts this technology has on energy production and remediation, this book is an all-inclusive reference source for professionals and researchers interested in understanding the multi-disciplinary applications of nanotechnology and nanoscience.
Metal-organic frameworks (MOFs) are some of the most discussed materials of the last decade. Their extraordinary porosity and functionality from metals and organic linkers make them one of the most promising materials for a vast array of applications. The easy tunability of their pore size and shape from the micro- to meso-scale by changing the connectivity of the inorganic moiety and the nature of the organic linkers makes these materials special. Moreover, by combining with other suitable materials, the properties of MOFs can be improved further for enhanced functionality/stability, ease of preparation, and selectivity of operation. Emerging Applications and Implementations of Metal-Organi...
Advances are continuously being made in applying the coatings and surface treatments by different techniques to reduce the damages from tribology. Engineers need more detailed information to compare the capability of each coating process in wear resistant and lubrication applications. It is also important to focus on the concepts of tribology in various applications such as the manufacturing process, bio implants, machine elements, and corrosive environments. The need for a comprehensive resource addressing these findings in order to improve wear resistance is unavoidable. The Handbook of Research on Tribology in Coatings and Surface Treatment evaluates the latest advances the fabrication of wear-resistant and lubricant coatings by different techniques and investigates wear-resistant coatings and surface treatments in various applications such as the automobile industry. Covering a wide range of topics such as lubricant coatings and wearable electronic devices, it is ideal for engineers, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
As technology advances, it is imperative to stay current in the newest developments made within the engineering industry and within material sciences. Trends in manufacturing such as 3D printing, casting, welding, surface modification, computer numerical control (CNC), non-traditional, Industry 4.0 ergonomics, and hybrid machining methods must be closely examined to utilize these important resources for the betterment of society. Advanced Manufacturing Techniques for Engineering and Engineered Materials provides a unified and complete overview about the recent and emerging trends, developments, and associated technology with scope for the commercialization of techniques specific to manufacturing materials. This book also reviews the various machining methods for difficult-to-cut materials and novel materials including matrix composites. Covering topics such as agro-waste, conventional machining, and material performance, this book is an essential resource for researchers, engineers, technologists, students and professors of higher education, industry workers, entrepreneurs, researchers, and academicians.
In the automotive industry, the need to reduce vehicle weight has given rise to extensive research efforts to develop aluminum and magnesium alloys for structural car body parts. In aerospace, the move toward composite airframe structures urged an increased use of formable titanium alloys. In steel research, there are ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient and reliable lightweight steel components. All these materials, and more, constitute today’s research mission for lightweight structures. They provide a fertile materials science research field aiming to achieve a better understanding of the interplay between industrial proce...
Nanoemulsions are produced by mixing an oil phase with an aqueous phase under shear pressure. This procedure yields uniform populations of oil droplets ranging in diameter from 200 to 8 nm that are kinetically stable colloidal substances with enhanced properties compared to the conventional emulsion substances. Nanoemulsions have broad potential applications in agriculture, food, health, and biomedical sciences. The Handbook of Research on Nanoemulsion Applications in Agriculture, Food, Health, and Biomedical Sciences focuses on the aspects of nanoemulsion-like synthesis, characterization, and more and examines recent trends in their applications within a variety of relevant fields. Nanoemulsions have broad application in many different fields; without emulsification, process product development would not be possible. Covering topics such as cancer treatment, healthcare applications, and food manufacturing, this book is essential for scientists, doctors, researchers, post-graduate students, medical students, government officials, hospital directors, professors, and academicians.