You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This symposium was organized at the B.M. Birla Science Centre, Hyderabad, India, and provided a platform for frontier physicists to exchange ideas and review the latest work and developments on a variety of interrelated topics. A feature of the symposium, as well as the proceedings, is the B.M. Birla Memorial Lecture by Nobel Laureate Professor Gerard 't Hooft. There were participants from the USA, several European countries, Russia and CIS countries, South Africa, Japan, India and elsewhere, of whom some forty scientists presented papers. Spanning a wide range of contemporary issues in fundamental physics from string theory to cosmology, the proceedings present many of these talks and contributions.
The Sixth International Symposium "Frontiers of Fundamental and Computational Physics", Udine, Italy, 26-29 September 2004, aimed at providing a platform for a wide range of physicists to meet and share thoughts on the latest trends in various, mainly cross-disciplinary research areas. This includes the exploration of frontier lines in High Energy Physics, Theoretical Physics, Gravitation and Cosmology, Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines were unified by the use of computers as an, often primary, research instruments, or dealing with issues related to information theory. The book contains contributions by Nobel Laureates Leon N. Cooper (1972) and Gerard ‘t Hooft (1999), and concludes with two interesting chapters on new approaches to Physics Teaching. Audience Graduate students, lecturers and researches in Physics
This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies and thus goes beyond the classical and quantum regimes taken separately. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.
This book explains the calculations of Laughlin and Schrieffer and shows how they are modified when the magnetic length is treated properly. The attachment of flux quanta to the electron has been discussed at length and experimental reports are re-examined in the light of variable magnetic length. The angular momentum theory of the Quantum Hall Effect explains the experimental data as is well based on theoretical grounds. An effort is made to compromise the flux-attached electron theory with the angular momentum theory which shows that some of the composite fermions become bosons. The Quantum Hall effect is explained on the basis of angular momentum theory. The importance of the negative spin has been discussed. The considerable amount of literature is reviewed.
This book explores various aspects of biophysics, from neurobiology to quantum biology and the consciousness of human beings and in the universe. It examines eight different areas of natural intelligence, ranging from time crystals found in chemical biology, to the vibrations and the resonance of proteins, and also discusses hierarchical communication in various biological systems. Written by senior and experts in the field in language that is lucid and easy to understand, it is a valuable reference resource for researchers and practitioners in academia and industry.
None
Gang activity in the United States has been traced to the early 19th century when youth gangs emerged from some immigrant populations. Now, as then, gangs provide identity and social relationships for some young people who feel marginalised by the dominant social, economic and cultural environments in which they live. Gangs, however, are not simply a "street family" to some of the nation's disenfranchised. As distinguished by the U.S. Department of Justice, "a group must be involved in a pattern of criminal acts to be considered a youth gang." Between 1980 and 1996, the U.S. experienced significant growth in youth gangs, when the number of cities and jurisdictions that reported gang problems rose from 2863 to approximately 4,800. From 1996 through 1998, the growth seemed to slow down, but according to the 1999 National Youth Gang Survey, the number of gang members is again on the rise.
Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.
One of the most enduring elements in theoretical physics has been group theory. GROUP 24: Physical and Mathematical Aspects of Symmetries provides an important selection of informative articles describing recent advances in the field. The applications of group theory presented in this book deal not only with the traditional fields of physics, but also include such disciplines as chemistry and biology. Awarded the Wigner Medal and the Weyl Prize, respectively, H.J. Lipkin and E. Frenkel begin the volume with their contributions. Plenary session contributions are represented by 18 longer articles, followed by nearly 200 shorter articles. The book also presents coherent states, wavelets, and applications and quantum group theory and integrable systems in two separate sections. As a record of an international meeting devoted to the physical and mathematical aspects of group theory, GROUP 24: Physical and Mathematical Aspects of Symmetries constitutes an essential reference for all researchers interested in various current developments related to the important concept of symmetry.