You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning ...
This book consists of papers on the recent progresses in the state of the art in natural computation, fuzzy systems and knowledge discovery. The book is useful for researchers, including professors, graduate students, as well as R & D staff in the industry, with a general interest in natural computation, fuzzy systems and knowledge discovery. The work printed in this book was presented at the 2020 16th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2020), held in Xi'an, China, from 19 to 21 December 2020. All papers were rigorously peer-reviewed by experts in the areas.
This book constitutes the refereed proceedings of the 15th International Conference on Unconventional Computation and Natural Computation, UCNC 2016, held in Manchester, UK, in July 2016. The 15 revised full papers presented together with 5 invited papers were carefully reviewed and selected from 30 submissions. The papers cover a wide range of topics including molecular, cellular, quantum, optical and chaos computing; cellular automata; neural and evolutionary computation; artificial immune systems; Ant algorithms and swarm intelligence; amorphous computing; membrane computing; computational systems biology and computational neuroscience; and synthetic biology.
This book and its sister volumes, i.e., LNCS vols. 3610, 3611, and 3612, are the proceedings of the 1st International Conference on Natural Computation (ICNC 2005), jointly held with the 2nd International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2005, LNAI vols. 3613 and 3614) from 27 to 29 August 2005 in Changsha, Hunan, China.
Designed for the MIT course, "Natural Computation, this extensive book of readings combines mathematics, artificial intelligence, computer science, experimental psychology, and neurophysiology in studying perception. Mathematics is emphasized for making perceptual inferences and the spectrum of mathematical techniques used is very broad. While the more than thirty readings focus primarily on vision, they also encompass the study of sound perception and the interpretation and application of forces including movement.Each article is a self contained example of how a perceptual problem may be tackled and solved. For example, what makes wood look like wood not like stone, sand, or grass? How can we represent three dimensional shapes when the same shape is rarely seen in exactly the same way? Each of the five sections is preceded by an introduction and the book concludes with problem sets.Whitman A. Richards is Professor in the Brain and Cognitive Science Department at MIT. A Bradford Book.
The two-volume set LNCS 5601 and LNCS 5602 constitutes the refereed proceedings of the Third International Work-Conference on the Interplay between Natural and Artificial Computation, IWINAC 2009, held in Santiago de Compostela, Spain, in June 2009. The 108 revised papers presented are thematically divided into two volumes. The first volume includes papers relating the most recent collaborations with Professor Mira and contributions mainly related with theoretical, conceptual and methodological aspects linking AI and knowledge engineering with neurophysiology, clinics and cognition. The second volume contains all the contributions connected with biologically inspired methods and techniques for solving AI and knowledge engineering problems in different application domains.
The Fuzzy Systems, Knowledge Discovery, and Natural Computation Symposium (FSKDNC 2013) was successfully held from 24 to 25 July 2013, in Shenyang, China. The Symposium was a platform for authors to present their recent development on fuzzy systems, knowledge discovery, and natural computation (i.e., intelligent techniques inspired from nature, such as neural networks, genetic algorithms, and particle swarm optimization). The Symposium attracted numerous submissions from around the globe. Each submitted paper was rigorously reviewed by the program committee and additional reviewers based on originality, significance and quality of the research, clarity of the presentation, and relevance to the Symposium theme. 60 papers are included in the Symposium proceedings after the review process. The great efforts of the authors, the Organizing Committee members, the Program Committee members, and the additional reviewers are acknowledged here. The Symposium would not have been possible without the support from Liaoning Technical University. The professional and courteous staff from DEStech Publications, Inc also deserves special credits.
This book discusses the recent advances in natural computation, fuzzy systems and knowledge discovery. Presenting selected, peer-reviewed papers from the 15th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2019), held in Kunming, China, from 20 to 22 July 2019, it is a useful resource for researchers, including professors and graduate students, as well as R&D staff in industry.
This book constitutes the refereed proceedings of the 13th International Conference on Unconventional Computation and Natural Computation, UCNC 2014, held in London, ON, Canada, in July 2014. The 31 revised full papers were carefully reviewed and selected from 79 submissions. The papers cover a wide range of topics including among others molecular, quantum, optical and chaos computing as well as neural computation, evolutionary computation, swarm intelligence and computational neuroscience.