You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The President's FY 2003 Budget Request for the National Science Foundation (NSF) under the Major Research Equipment and Facilities Construction Account called for a National Research Council (NRC) review of the scientific merits of IceCube and other proposed U.S. neutrino projects in the context of current and proposed capabilities throughout the world. The NRC committee-the Neutrino Facilities Assessment Committee (NFAC)-was charged with providing scientific assessments of two possible future science initiatives: (1) IceCube, a very large volume detector of high-energy neutrinos proposed for the South Pole and (2) a possible deep underground science facility to be developed in the United St...
According to the big bang theory, our Universe began in a state of unimaginably high energy and density, contained in a space of subatomic dimensions. At that time, unlike today, the fundamental forces of nature were presumably unified and the particles present were interacting at energies not attainable by present-day accelerators. Underground laboratories provide the conditions to investigate processes involving rare phenomena in matter and to detect the weak effects of highly elusive particles by replicating similar environments to those once harnessed during the earliest states of the Earth. These laboratories now appear to be the gateway to understanding the physics of the grand unifica...
Publisher description
Are you unable to remember the definitions and rules/laws of physics? Don’t worry. Dictionary of Physics shall come to your rescue. Do you want to know about the Nobel laureates of physics? This is also available in the dictionary.
Over ten years ago, U.S. nuclear scientists proposed construction of a new rare isotope accelerator in the United States, which would enable experiments to elucidate the important questions in nuclear physics. To help assess this proposal, DOE and NSF asked the NRC to define the science agenda for a next-generation U.S. Facility for Rare Isotope Beams (FRIB). As the study began, DOE announced a substantial reduction in the scope of this facility and put off its initial operation date by several years. The study focused on an evaluation of the science that could be accomplished on a facility reduced in scope. This report provides a discussion of the key science drivers for a FRIB, an assessment of existing domestic and international rare isotope beams, an assessment of the current U.S. position about the FRIB, and a set of findings and conclusions about the scientific and policy context for such a facility.