You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.
The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.
The Sixth International Symposium "Frontiers of Fundamental and Computational Physics", Udine, Italy, 26-29 September 2004, aimed at providing a platform for a wide range of physicists to meet and share thoughts on the latest trends in various, mainly cross-disciplinary research areas. This includes the exploration of frontier lines in High Energy Physics, Theoretical Physics, Gravitation and Cosmology, Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines were unified by the use of computers as an, often primary, research instruments, or dealing with issues related to information theory. The book contains contributions by Nobel Laureates Leon N. Cooper (1972) and Gerard ‘t Hooft (1999), and concludes with two interesting chapters on new approaches to Physics Teaching. Audience Graduate students, lecturers and researches in Physics
This unique book contains a biographical portrait, accounts of Chandrasekhar's role and impact on modern science, historical perspectives and personal reminiscences, several of which appeared in Physics Today, and reviews by leading experts in areas which Prof. Chandrasekhar pioneered. The reviews, which appeared in the Bulletin of the Astronomical Society of India, are either based on papers presented by scholars in the Chandrasekhar Centennial Symposium at the University of Chicago during 15-17 October 2010, or were additional reviews covering topics not represented at the conference by other distinguished astrophysicists. It provides a glimpse of some of the most exciting areas of modern astrophysics as a tribute to Prof Chandrasekhar on his birth centenary.
Black Holes are still considered to be among the most mysterious and fascinating objects in our universe. Awaiting the era of gravitational astronomy, much progress in theoretical modeling and understanding of classical and quantum black holes has already been achieved. The present volume serves as a tutorial, high-level guided tour through the black-hole landscape: information paradox and blackhole thermodynamics, numerical simulations of black-hole formation and collisions, braneworld scenarios and stability of black holes with respect to perturbations are treated in great detail, as is their possible occurrence at the LHC. An outgrowth of a topical and tutorial summer school, this extensive set of carefully edited notes has been set up with the aim of constituting an advanced-level, multi-authored textbook which meets the needs of both postgraduate students and young researchers in the fields of modern cosmology, astrophysics and (quantum) field theory.
Over the last decade, astrophysical observations of neutron stars — both as isolated and binary sources — have paved the way for a deeper understanding of the structure and dynamics of matter beyond nuclear saturation density. The mapping between astrophysical observations and models of dense matter based on microscopic dynamics has been poorly investigated so far. However, the increased accuracy of present and forthcoming observations may be instrumental in resolving the degeneracy between the predictions of different equations of state. Astrophysical and laboratory probes have the potential to paint to a new coherent picture of nuclear matter — and, more generally, strong interaction...
Marcel Grossmann Meetings are formed to further the development of General Relativity by promoting theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. In these meetings are discussed recent developments in classical and quantum gravity, general relativity and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, with the main objective of gathering scientists from diverse backgrounds for deepening the understanding of spacetime structure and reviewing the status of test-experiments for Einstein's theory of gravitation. The range o...
In 1975 the Marcel Grossmann Meetings were established by Remo Ruffini and Abdus Salam to provide a forum for discussion of recent advances in gravitation, general relativity, and relativistic field theories. In these meetings, which are held once every three years, every aspect of research is emphasized - mathematical foundations, physical predictions, and numerical and experimental investigations. The major objective of these meetings is to facilitate exchange among scientists, so as to deepen our understanding of the structure of space-time and to review the status of both the ground-based and the space-based experiments aimed at testing the theory of gravitation.The Marcel Grossmann Meet...
In the last 25 years, an extensive body of work has developed various equation of state independent - or (approximately) universal - relations that allow for the inference of neutron star parameters from gravitational wave observations. These works, however, have mostly been focused on singular neutron stars, while our observational efforts at the present, and in the near future, will be focused on binary neutron star (BNS) mergers. In light of these circumstances, the last five years have also given rise to more attempts at developing universal relations that relate BNS pre-merger neutron stars to stellar parameters of the post-merger object, mostly driven by numerical relativity simulation...