You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this paper, we introduce the concept of neutrosophic fuzzy soft translations and neutrosophic fuzzy soft extensions of neutrosophic fuzzy soft BCK-submodules and discusse the relation between them. Also, we de ne the notion of neutrosophic fuzzy soft multiplications of neutrosophic fuzzy soft BCK-submodules. Finally, we investigate some resultes.
Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches.
This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics;...
This book provides a timely overview of fuzzy graph theory, laying the foundation for future applications in a broad range of areas. It introduces readers to fundamental theories, such as Craine’s work on fuzzy interval graphs, fuzzy analogs of Marczewski’s theorem, and the Gilmore and Hoffman characterization. It also introduces them to the Fulkerson and Gross characterization and Menger’s theorem, the applications of which will be discussed in a forthcoming book by the same authors. This book also discusses in detail important concepts such as connectivity, distance and saturation in fuzzy graphs. Thanks to the good balance between the basics of fuzzy graph theory and new findings obtained by the authors, the book offers an excellent reference guide for advanced undergraduate and graduate students in mathematics, engineering and computer science, and an inspiring read for all researchers interested in new developments in fuzzy logic and applied mathematics.
In the course of fuzzy technological development, fuzzy graph theory was identified quite early on for its importance in making things work. Two very important and useful concepts are those of granularity and of nonlinear ap proximations. The concept of granularity has evolved as a cornerstone of Lotfi A.Zadeh's theory of perception, while the concept of nonlinear approx imation is the driving force behind the success of the consumer electronics products manufacturing. It is fair to say fuzzy graph theory paved the way for engineers to build many rule-based expert systems. In the open literature, there are many papers written on the subject of fuzzy graph theory. However, there are relativel...
Fuzzy Sets and Their Applications to Cognitive and Decision Processes contains the proceedings of the U.S.-Japan Seminar on Fuzzy Sets and Their Applications, held at the University of California in Berkeley, California, on July 1-4, 1974. The seminar provided a forum for discussing a broad spectrum of topics related to the theory of fuzzy sets, ranging from its mathematical aspects to applications in human cognition, communication, decision making, and engineering systems analysis. Comprised of 19 chapters, this book begins with an introduction to the calculus of fuzzy restrictions, followed by a discussion on fuzzy programs and their execution. Subsequent chapters focus on fuzzy relations, fuzzy graphs, and their applications to clustering analysis; risk and decision making in a fuzzy environment; fractionally fuzzy grammars and their application to pattern recognition; and applications of fuzzy sets in psychology. An approach to pattern recognition and associative memories using fuzzy logic is also described. This monograph will be of interest to students and practitioners in the fields of computer science, engineering, psychology, and applied mathematics.
None
The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material.