You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The nuclear fuel cycle is characterised by the wide range of scientific disciplines and technologies it employs. The development of ever more integrated processes across the many stages of the nuclear fuel cycle therefore confronts plant manufacturers and operators with formidable challenges. Nuclear fuel cycle science and engineering describes both the key features of the complete nuclear fuel cycle and the wealth of recent research in this important field.Part one provides an introduction to the nuclear fuel cycle. Radiological protection, security and public acceptance of nuclear technology are considered, along with the economics of nuclear power. Part two goes on to explore materials mi...
The Metallurgy of Nuclear Fuel: Properties and Principles of the Technology of Uranium, Thorium and Plutonium is a systematic analysis of the metallurgy of nuclear fuel, with emphasis on the physical, mechanical, and chemical properties as well as the technology of uranium, thorium, and plutonium, together with their alloys and compounds. The minerals and raw material sources of nuclear fuel are discussed, along with the principles of the technology of the raw material processing and the production of the principal compounds, and of the pure metals and alloys. Comprised of three parts, this volume begins with an introduction to the history of the discovery of uranium and its position in the ...
Advances in Nuclear Fuel Chemistry presents a high-level description of nuclear fuel chemistry based on the most recent research and advances. Dr. Markus H.A. Piro and his team of global, expert contributors cover all aspects of both the conventional uranium-based nuclear fuel cycle and non-conventional fuel cycles, including mining, refining, fabrication, and long-term storage, as well as emerging nuclear technologies, such as accident tolerant fuels and molten salt materials. Aimed at graduate students, researchers, academics and practicing engineers and regulators, this book will provide the reader with a single reference from which to learn the fundamentals of classical thermodynamics an...
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems – crystalline, clay, and salt, also discussing met...
The present book describes the various processes involved in different stages of the entire nuclear fuel cycle, which include exploration of uranium, thorium, and other nuclear materials, mining and milling of ores, conversion of the separated nuclear material into nuclear grade, fabrication of different types of nuclear fuels and their physical as well as chemical quality control, thermodynamics of the interaction among fuel and fission products during reactor operation, post irradiation examination, spent fuel reprocessing, radioactive waste management, accounting and control of nuclear materials, and safety aspects involved in handling and transportation of nuclear materials. The book provides the fundamental knowledge to the practicing nuclear scientists and engineers, young researchers, and postgraduate students interested in pursuing a career in nuclear industry in general and those engaged in human resource development in the field of nuclear science and technology in particular. It can also be prescribed as a textbook for a course on nuclear fuel cycle at postgraduate level.
This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal.
This publication focuses on the medical management of individuals involved in radiation emergencies, especially those who have been exposed to high doses of ionizing radiation. Its primary objective is to provide practical information, to be used for treatment decisions by medical personnel during a radiation emergency. It also addresses general and specific measures for the medical management of individuals who have been internally contaminated with radionuclides. This publication is complementary to other publications developed by the IAEA in the medical area of radiation emergencies.
Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overview of nuclear reactors and fuel elements, as well as fuel element design and development based on the...
Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reduc...