You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume of Progress in Colloid and Polymer Science assembles original contributions and invited reviews from the priority research program "Intelligent Hydrogels", funded by the German Science Foundation DFG since 2006, with about 25 contributing research groups. In the center of interest of this program and the present book are responsive hydrogels, i.e. hydrophilic polymer or polyelectrolyte networks that are able to respond to environmental stimuli such as changes in temperature, pH, additive concentration or electrical field. The activities focus on different aspects: on hydrogel synthesis, on the modeling and simulation of thermophysical hydrogel properties, as well as on innovative new hydrogel applications as smart materials. The present book summarizes the highlights in the results of the priority program in original contributions and invited reviews.
None
None
During recent years our enthusiasm for this field has continually increased. This book presents expert contributions describing the fundamental principles for the widespread use of radiative decay engineering in the biological sciences and nanotechnology.
The technique of Quasi-Elastic Neutron Scattering (QENS) is a powerful experimental tool for extracting temporal and spatial information at the nanoscale from both soft and hard condensed matter systems. However, while seemingly simple, the method is beset with sensitivities that, if ill considered, can hinder data interpretation and possibly publication. By highlighting key theoretical and data evaluation aspects of the technique, this specialised ‘primer style’ training resource encourages research success by guiding new researchers through a typical QENS experiment; from planning and sample preparation considerations to data reduction and subsequent analysis. Research examples are referenced throughout to illustrate the concepts addressed, with the book being written in such a way that it remains accessible to chemists, biologists, physicists, and materials scientists.
Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron scattering instrumentation and techniques, and applications in materials phenomena. Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.