You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.
There has been an enormous growth in recent years in the literature on discrete optimal designs. The optimality problems have been formulated in various models arising in the experimental designs and substantial progress has been made towards solving some of these. The subject has now reached a stage of completeness which calls for a self-contained monograph on this topic. The aim of this monograph is to present the state of the art and to focus on more recent advances in this rapidly developing area. We start with a discussion of statistical optimality criteria in Chapter One. Chapters Two and Three deal with optimal block designs. Row-column designs are dealt with in Chapter Four. In Chapt...
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required r...
Prior to the 1970's a substantial literature had accumulated on the theory of optimal design, particularly of optimal linear regression design. To a certain extent the study of the subject had been piecemeal, different criteria of optimality having been studied separately. Also to a certain extent the topic was regarded as being largely of theoretical interest and as having little value for the practising statistician. However during this decade two significant developments occurred. It was observed that the various different optimality criteria had several mathematical properties in common; and general algorithms for constructing optimal design measures were developed. From the first of the...
Experiments in the field and in the laboratory cannot avoid random error and statistical methods are essential for their efficient design and analysis. Authored by leading experts in key fields, this text provides many examples of SAS code, results, plots and tables, along with a fully supported website.
The present volume is a collective monograph devoted to applications of the optimal design theory in optimization and statistics. The chapters re?ect the topics discussed at the workshop “W-Optimum Design and Related Statistical Issues” that took place in Juan-les-Pins, France, in May 2005. The title of the workshop was chosen as a light-hearted celebration of the work of Henry Wynn. It was supported by the Laboratoire I3S (CNRS/Universit ́ e de Nice, Sophia Antipolis), to which Henry is a frequent visitor. The topics covered partly re?ect the wide spectrum of Henry’s research - terests. Algorithms for constructing optimal designs are discussed in Chap. 1, where Henry’s contribution...
The increasing cost of research means that scientists are in more urgent need of optimal design theory to increase the efficiency of parameter estimators and the statistical power of their tests. The objectives of a good design are to provide interpretable and accurate inference at minimal costs. Optimal design theory can help to identify a design with maximum power and maximum information for a statistical model and, at the same time, enable researchers to check on the model assumptions. This Book: Introduces optimal experimental design in an accessible format. Provides guidelines for practitioners to increase the efficiency of their designs, and demonstrates how optimal designs can reduce ...
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi
The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing ...