You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book aims to introduce the reader to the emerging field of Evolutionary Systems Biology, which approaches classical systems biology questions within an evolutionary framework. An evolutionary approach might allow understanding the significance of observed diversity, uncover “evolutionary design principles” and extend predictions made in model organisms to others. In addition, evolutionary systems biology can generate new insights into the adaptive landscape by combining molecular systems biology models and evolutionary simulations. This insight can enable the development of more detailed mechanistic evolutionary hypotheses.
Gene duplication has long been believed to have played a major role in the rise of biological novelty through evolution of new function and gene expression patterns. The first book to examine gene duplication across all levels of biological organization, Evolution after Gene Duplication presents a comprehensive picture of the mechanistic process by which gene duplication may have played a role in generating biodiversity. Key Features: Explores comparative genomics, genome evolution studies and analysis of multi-gene families such as Hox, globins, olfactory receptors and MHC (immune system) A complete post-genome treatment of the topic originally covered by Ohno's 1970 classic, this volume ex...
Introduction: working together on individuality / Lynn K. Nyhart and Scott Lidgard -- The work of biological individuality: concepts and contexts / Scott Lidgard and Lynn K. Nyhart -- Cells, colonies, and clones: individuality in the volvocine algae / Matthew D. Herron -- Individuality and the control of life cycles / Beckett Sterner -- Discovering the ties that bind: cell-cell communication and the development of cell sociology / Andrew S. Reynolds -- Alternation of generations and individuality, 1851 / Lynn K. Nyhart and Scott Lidgard -- Spencer's evolutionary entanglement: from liminal individuals to implicit collectivities / Snait Gissis -- Biological individuality and enkapsis: from Mar...
In recent decades, there has been a major shift in the way researchers process and understand scientific data. Digital access to data has revolutionized ways of doing science in the biological and biomedical fields, leading to a data-intensive approach to research that uses innovative methods to produce, store, distribute, and interpret huge amounts of data. In Data-Centric Biology, Sabina Leonelli probes the implications of these advancements and confronts the questions they pose. Are we witnessing the rise of an entirely new scientific epistemology? If so, how does that alter the way we study and understand life—including ourselves? Leonelli is the first scholar to use a study of contemp...
Enzymes in the Valorization of Waste: Next-Gen Technological Advances for Sustainable Development of Enzyme-based Biorefinery focusses on key enzymes which are involved in the development of integrated biorefinery. It highlights the modern next-gen technologies for promoting the application of sustainable and greener enzymatic steps at industrial scale for the development of futuristic and self-sustainable "consolidated/integrated biorefinery/enzyme-based biorefinery." It also deals with technological advancement for improvement of enzyme yield or specificity, conversion capability, such as protein and metabolic engineering and advances in next generation technologies, and so forth. Features...
The natural world is infinitely complex and hierarchically structured, with smaller units forming the components of larger systems: genes are components genomes, cells are building blocks of tissues and organs, individuals are members of populations, which, in turn, are parts of species. In the face of such awe inspiring complexity, scientists need tools like the hierarchy theory of evolution, which provides a theoretical framework and an interdisciplinary research program that aims to understand the way complex biological systems work and evolve. The multidisciplinary approach looks at the structure of the myriad intricate interactions across levels of organization that range from molecules to the biosphere. Evolutionary Theory: A Hierarchical Perspective provides an introduction to the theory, which is currently driving a great deal of research in bioinformatics and evolutionary theory. Written by a diverse and renowned group of contributors, and edited by the founder of Hierachy Theory Niles Eldredge, this work will help make transparent the fundamental patterns driving living sytems.
This new edition captures the advances made in the field of evolutionary systems biology since the publication of the first edition. The first edition focused on laying the foundations of evolutionary systems biology as an interdisciplinary field, where a way of thinking and asking questions is combined with a wide variety of tools, both experimental and theoretical/computational. Since publication of the first edition, evolutionary systems biology is now a well-known term describing this growing field. The new edition provides an overview of the current status and future developments of this interdisciplinary field. Chapters highlight several key achievements from the last decade and outline exciting new developments, including an understanding of the interplay between complexity and predictability in evolutionary systems, new viewpoints and methods to study organisms in evolving populations at the level of the genome, gene regulatory network, and metabolic network, and better analysis and modeling techniques that will open new avenues of scientific inquiry.
The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and...