You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
About the book In honor of Edgar Enochs and his venerable contributions to a broad range of topics in Algebra, top researchers from around the world gathered at Auburn University to report on their latest work and exchange ideas on some of today's foremost research topics. This carefully edited volume presents the refereed papers of the par
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has nece...
This work is based on a set of lectures and invited papers presented at a meeting in Murcia, Spain, organized by the European Commission's Training and Mobility of Researchers (TMR) Programme. It contains information on the structure of representation theory of groups and algebras and on general ring theoretic methods related to the theory.
This book contains the proceedings of the AMS Special Session, in honor of S. K. Jain's 80th birthday, on Categorical, Homological and Combinatorial Methods in Algebra held from March 16–18, 2018, at Ohio State University, Columbus, Ohio. The articles contained in this volume aim to showcase the current state of art in categorical, homological and combinatorial aspects of algebra.
Among all areas of mathematics, algebra is one of the best suited to find applications within the frame of our booming technological society. The thirty-eight articles in this volume encompass the proceedings of the International Conference on Algebra and Its Applications (Athens, OH, 1999), which explored the applications and interplay among the disciplines of ring theory, linear algebra, and coding theory. The presentations collected here reflect the dialogue between mathematicians involved in theoretical aspects of algebra and mathematicians involved in solving problems where state-of-the-art research tools may be used and applied. This Contemporary Mathematics series volume communicates the potential for collaboration among those interested in exploring the wealth of applications for abstract algebra in fields such as information and coding. The expository papers would serve well as supplemental reading in graduate seminars.
Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding", "wrapping'', and "lifting''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.
The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I. M. Vinogradov ́s estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and in addition they present purely arithmetic results concerning the solvability of equations in integers.
Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular: · a general introduction to automatic sequences · the basic (combinatorial) properties of automatic sequences · the algebraic approach to automatic sequences · geometric objects related to automatic sequences.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, Univ...