You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Oxidizing and Reducing Agents S. D. Burke University of Wisconsin at Madison, USA R. L. Danheiser Massachusetts Institute of Technology, Cambridge, USA Recognising the critical need for bringing a handy reference work that deals with the most popular reagents in synthesis to the laboratory of practising organic chemists, the Editors of the acclaimed Encyclopedia of Reagents for Organic Synthesis (EROS) have selected the most important and useful reagents employed in contemporary organic synthesis. Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Agents, provides the synthetic chemist with a convenient compendium of information concentrating on the most important and frequently employed reagents for the oxidation and reduction of organic compounds, extracted and updated from EROS. The inclusion of a bibliography of reviews and monographs, a compilation of Organic Syntheses procedures with tested experimental details and references to oxidizing and reducing agents will ensure that this handbook is both comprehensive and convenient.
Over the last decades several researchers discovered that children, pupils and even young adults develop their own understanding of "how nature really works". These pre-concepts concerning combustion, gases or conservation of mass are brought into lectures and teachers have to diagnose and to reflect on them for better instruction. In addition, there are ‘school-made misconceptions’ concerning equilibrium, acid-base or redox reactions which originate from inappropriate curriculum and instruction materials. The primary goal of this monograph is to help teachers at universities, colleges and schools to diagnose and ‘cure’ the pre-concepts. In case of the school-made misconceptions it will help to prevent them from the very beginning through reflective teaching. The volume includes detailed descriptions of class-room experiments and structural models to cure and to prevent these misconceptions.
Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications discusses the structure, bonding and reactivity of molecules and solids of environmental interest, bringing the reactivity of non-metals and metals to inorganic chemists, geochemists and environmental chemists from diverse fields. Understanding the principles of inorganic chemistry including chemical bonding, frontier molecular orbital theory, electron transfer processes, formation of (nano) particles, transition metal-ligand complexes, metal catalysis and more are essential to describe earth processes over time scales ranging from 1 nanosec to 1 Gigayr. Throughout the book, fundamental chemical pr...
This book teaches chemistry at an appropriate level of rigor while removing the confusion and insecurity that impair student success. Students are frequently intimidated by prep chem; Bishop's text shows them how to break the material down and master it. The flexible order of topics allows unit conversions to be covered either early in the course (as is traditionally done) or later, allowing for a much earlier than usual description of elements, compounds, and chemical reactions. The text and superb illustrations provide a solid conceptual framework and address misconceptions. The book helps students to develop strategies for working problems in a series of logical steps. The Examples and Exercises give plenty of confidence-building practice; the end-of-chapter problems test the student's mastery. The system of objectives tells the students exactly what they must learn in each chapter and where to find it.
Few processes are as important for environmental geochemistry as the interplay between the oxidation and reduction of dissolved and solid species. The knowledge of the redox conditions is most important to predict the geochemical behaviour of a great number of components, the mobilities of which are directly or indirectly controlled by redox processes. The understanding of the chemical mechanisms responsible for the establishment of measurable potentials is the major key for the evaluation and sensitive interpretation of data. This book is suitable for advanced undergraduates as well as for all scientists dealing with the measurement and interpretation of redox conditions in the natural environment.
Organic Reaction Mechanisms 2016, the 52nd annual volume in this highly successful and unique series, surveys research on organic reaction mechanisms described in the available literature dated 2016. The following classes of organic reaction mechanisms are comprehensively reviewed: Reaction of Aldehydes and Ketones and their Derivatives Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and their Derivatives Oxidation and Reduction Carbenes and Nitrenes Nucleophilic Aromatic Substitution Electrophilic Aromatic Substitution Carbocations Nucleophilic Aliphatic Substitution Carbanions and Electrophilic Aliphatic Substitution Elimination Reactions Polar Addition Reactions Cycloaddition Reactions Molecular Rearrangements
Mimicking nature's efficiency and sustainability in organic chemistry is a major goal for future chemists; redox reactions are a key element in a variety of fields ranging from synthesis and catalysis to materials chemistry and analytical applications. Sustainability is increasingly becoming a consideration in synthesis and functional chemistry and an essential element for the next generation of chemistry in academia and industry. This book represents a compilation of the latest advancements in functional redox chemistry and demonstrates its importance in achieving a more sustainable future. This book is an ideal companion for any postgraduate students or researchers interested in sustainability in academia and industry.
Redox Polymers for Energy and Nanomedicine highlights trends in the chemistry, characterization and application of polymers with redox properties.
Redox reactions are central to the major element cycling, many cell cycles, many chemisorption and physisorption processes, trace element mobility from rocks and sediments toward wells, aquifers, trace element toxicity toward life forms, and most remediation schemes including water treatments; over the last three decades, the field has attracted a lot of scientists, and a great deal of researches has been done in redox chemistry. This book provides a very broad overview of the state of the art of understanding redox processes, which starts with giving a concise introduction that describes the origin, historical background, and the development of the redox definitions. The book is organized i...
Soil and Environmental Chemistry, Second Edition, presents key aspects of soil chemistry in environmental science, including dose responses, risk characterization, and practical applications of calculations using spreadsheets. The book offers a holistic, practical approach to the application of environmental chemistry to soil science and is designed to equip the reader with the chemistry knowledge and problem-solving skills necessary to validate and interpret data. This updated edition features significantly revised chapters, averaging almost a 50% revision overall, including some reordering of chapters. All new problem sets and solutions are found at the end of each chapter, and linked to a...