You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This reference is a volume in the Handbook of Physiology, co-published with The American Physiological Society. Growth in knowledge about the microcirculation has been explosive with the field becoming fragmented into numerous subdisciplines and subspecialties. This volume pulls all of the critical information into one volume. - Meticulously edited and reviewed. Benefit: Provides investigators a unique tool to explore the significance of their findings in the context of other aspects of the microcirculation. In this way, the updated edition has a direct role in helping to develop new pathways of research and scholarship - Highlights the explosive growth in knowledge about the microcirculation including the biology of nitric oxide synthase (NOS), endothelial cell signaling, angiogenesis, cell adhesion molecules, lymphocyte trafficking, ion channels and receptors, and propagated vasomotor responses. Benefit: Microcirculatory biology has become fragmented into numerous sub-disciplines and subspecialties, and these reference reintegrates the information in one volume
This publication primarily focuses on the macro- and micro- rheological behavior of blood and its formed elements, on interactions between the formed elements and blood vessel walls, and on the microvascular aspects of hemodynamics. Since many aspects of hemorheology and hemodynamics are affected by disease or clinical states, these effects are discussed as are hyperviscosity syndromes, therapy for disturbed blood rheology, and methods in hemorheology and hemodynamics. Sections of the Handbook include History of Hemorheology; Hemorheology, covering basic aspects, blood composition, blood rheology, cell mechanics, pathophysiology, methods and comparative studies; Hemodynamics, covering basic ...
Molecular nanotechnology has been defined as the three-dimensional positional control of molecular structure to create materials and devices to molecular precision. The human body is comprised of molecules, hence the availability of molecular nanotechnology will permit dramatic progress in human medical services. More than just an extension of "molecular medicine," nanomedicine will employ molecular machine systems to address medical problems, and will use molecular knowledge to maintain and improve human health at the molecular scale. Nanomedicine will have extraordinary and far-reaching implications for the medical profession, for the definition of disease, for the diagnosis and treatment of medical conditions including aging, for our very personal relationships with our own bodies and ultimately for the improvement and extension of natural human biological structure and function. This book will be published in three volumes over the course of several years. Readers wishing to keep up-to-date with the latest developments may visit the nanomedicine website maintained by the Foresight Institute (http://foresight.org/Nanomedicine/index.html).
Advances of cardiovascular engineering prompt one to consider innovative device technology - that is, the development of new replacement heart valves or engineering of a totally implantable energy source for an artificial heart. However, these kinds of advances have often proved unable to achieve a long-lasting benefit as the cardiovascular field has matured so fast. Cardiovascular engineering has matured to the point where a major innovation must not only function, but must continuously function better than existing devices. This is difficult to accomplish in the complex cardiovasculature system, in which energy source, biocompatibility, compliance, and functionality all must be considered....
The function and life span of endothelial cells have a large impact upon the quality and expectancy of an individual's life. During low perfusion, the adaptation of different cells to hypoxia precipitate the aggressive progression of diseases. Although the clinical studies have convincingly shown that endothelial dysfunction occurs whenever the biological functions or bioavailability of nitric oxide are impaired, in all these scenarios, the role of endothelial cell-destructive process cross-talk is yet poorly understood. This book focuses on the contribution of molecular mechanisms to endothelial dysfunction in related metabolic disorders.
Microcirculation is a rather new field which has been of predominant interest to basic scientists, linking togeth~r technical, hemodynamic, and biochemical aspects. The fmdings elaborated, however, are not only of theoretical interest, but bear in addition great clinical implications. In clinical cardiology this became quite evident by the use of tracers in order to study myocardial perfuSion and by the deSCription of certain clinical entities - such as angina with normal coro nary arteries - which are best explained by "disturbed microcirculation". With respect to this new developing theoretical and clinical field of cardiac microcirculation it was the aim of the Microcirculation Working Gr...
This volume supplements Volumes 63, 64, 87, and 249 of Methods in Enzymology. These volumes provide a basic source for the quantitative interpretation of enzyme rate data and the analysis of enzyme catalysis. Among the major topics covered are Engergetic Coupling in Enzymatic Reactions, Intermediates and Complexes in Catalysis, Detection and Properties of Low Barrier Hydrogen Bonds, Transition State Determination, and Inhibitors.The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today--truly an essential publication for researchers in all fields of life sciences.
Mary D. Frame