You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they hav...
Todaymanyeconomists, engineers and mathematicians are familiar with linear programming and are able to apply it. This is owing to the following facts: during the last 25 years efficient methods have been developed; at the same time sufficient computer capacity became available; finally, in many different fields, linear programs have turned out to be appropriate models for solving practical problems. However, to apply the theory and the methods of linear programming, it is required that the data determining a linear program be fixed known numbers. This condition is not fulfilled in many practical situations, e. g. when the data are demands, technological coefficients, available capacities, co...
Stochastic Programming offers models and methods for decision problems wheresome of the data are uncertain. These models have features and structural properties which are preferably exploited by SP methods within the solution process. This work contributes to the methodology for two-stagemodels. In these models the objective function is given as an integral, whose integrand depends on a random vector, on its probability measure and on a decision. The main results of this work have been derived with the intention to ease these difficulties: After investigating duality relations for convex optimization problems with supply/demand and prices being treated as parameters, a stability criterion is stated and proves subdifferentiability of the value function. This criterion is employed for proving the existence of bilinear functions, which minorize/majorize the integrand. Additionally, these minorants/majorants support the integrand on generalized barycenters of simplicial faces of specially shaped polytopes and amount to an approach which is denoted barycentric approximation scheme.
This book presents selected proceedings from the 22nd biennial IFIP conference on System Modeling and Optimization, held in Turin, Italy in July of 2005. This edition of the conference is dedicated to the achievements of Camillo Possio, who was killed sixty years ago during the last air raid over Turin. For more information about the 300 other books in the IFIP series, please visit www.springeronline.com.
A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.
Optimization problems arising in practice usually contain several random parameters. Hence, in order to obtain optimal solutions being robust with respect to random parameter variations, the mostly available statistical information about the random parameters should be considered already at the planning phase. The original problem with random parameters must be replaced by an appropriate deterministic substitute problem, and efficient numerical solution or approximation techniques have to be developed for those problems. This proceedings volume contains a selection of papers on modelling techniques, approximation methods, numerical solution procedures for stochastic optimization problems and applications to the reliability-based optimization of concrete technical or economic systems.
New theoretical insight into several branches of reliability-oriented optimization of stochastic systems, new computational approaches and technical/economic applications of stochastic programming methods can be found in this volume.
From the Preface... The preparation of this book started in 2004, when George B. Dantzig and I, following a long-standing invitation by Fred Hillier to contribute a volume to his International Series in Operations Research and Management Science, decided finally to go ahead with editing a volume on stochastic programming. The field of stochastic programming (also referred to as optimization under uncertainty or planning under uncertainty) had advanced significantly in the last two decades, both theoretically and in practice. George Dantzig and I felt that it would be valuable to showcase some of these advances and to present what one might call the state-of- the-art of the field to a broader...
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available.? In?Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.?