You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.
The book presents an updated state-of-the-art overview of the general aspects and practical applications of the theories of thin structures, through the interaction of several topics, ranging from non-linear thin-films, shells, junctions, beams of different materials and in different contexts (elasticity, plasticity, etc.). Advanced problems like the optimal design and the modeling of thin films made of brittle or phase-transforming materials will be presented as well.
First organized in 1981, the WASCOM conference to bring together researchers and scientists from all over the world to discuss problems, promote collaborations and shape future directions for research in the field of stability and wave propagation in continuous media.This book constitutes the proceedings of the 11th edition of the conference, the first of the third millennium. The main topics are: (1) Linear and nonlinear hyperbolic equations, conservation laws and specific aspects of wave propagation; (2) stability of systems of PDEs, with particular reference to those of fluid and solid mechanics; (3) extended thermodynamics and passage from microscopic to macroscopic description of the medium for systems characterized also by inelastic interactions at the kinetic scale.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.
The notion dealt with in this volume of proceedings is often traced back to the late 19th-century writings of a rather obscure scientist, C. V. Burton. A probable reason for this is that the painstaking de ciphering of this author's paper in the Philosophical Magazine (Vol. 33, pp. 191-204, 1891) seems to reveal a notion that was introduced in math ematical form much later, that of local structural rearrangement. This notion obviously takes place on the material manifold of modern con tinuum mechanics. It is more or less clear that seemingly different phe nomena - phase transition, local destruction of matter in the form of the loss of local ordering (such as in the appearance of structural ...
Mechanics is defined as a branch of physics that focuses on motion and the reaction of physical systems to internal and external forces. This highly acclaimed series provides survey articles on the present state and future direction of research in important branches of applied solid and fluid mechanics.
This book contains the papers presented at the conference on OC Mathematical Models and Methods for Smart MaterialsOCO, held in Italy in 2001. The papers are divided into four parts: OCOMethods in Materials ScienceOCO deals mainly with mathematical techniques for the investigation of physical systems, such as liquid crystals, materials with internal variables, amorphous materials, and thermoelastic materials. Also, techniques are exhibited for the analysis of stability and controllability of classical models of continuum mechanics and of dynamical systems.OCOModelling of Smart MaterialsOCO is devoted to models of superfluids, superconductors, materials with memory, nonlinear elastic solids, ...
Present developments in materials science, mechanics and engineering, as well as the demands of modern technology, result in a new and growing interest in plasticity and in bordering domains of the mechanical behavior of materials. This growing interest is attested to by the success of both The International Journal of Plasticity, which after its inception rapidly became the leading journal for plasticity research, and the series ofInternational Symposia on Plasticity and Its Current Applications, which is now the premier international forum for plasticity research dissemination. The First International Symposium on Plasticity and Its Current Applications was conceived and organized by Profe...
This monograph presents a comprehensive and rigorous new framework for the theoretical description and modelling of enriched continua. In other words, continua that exhibit more complex behaviour than their conventional counterparts and, in particular, multicomponent systems. It employs gradient theories, exhibiting multiple transition layers described by phase fields. As a point of departure, we account for multiple continuum kinematic processes, including motion and various phase fields. These gradient theories arise by considering various kinematic processes which are tightly linked to the level of the arbitrariness of the Euler–Cauchy cuts. The surface defining the Euler–Cauchy cut m...
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:• comprehensive review of the most popular theories of plates and shells,• relations between three-dimensional theories and two-dimensional ones,• presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),• modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,• applications in modeling of non-classical objects like, for example, nanostructures,• presentation of actual numerical tools based on the finite element approach.